Updating search results...

Search Resources

134 Results

View
Selected filters:
  • Physical Science
Water Bottle Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

What makes rockets fly straight? What makes rockets fly far? Why use water to make the rocket fly? Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then participate in three teacher-led mini-activities with demos to explore key rocket design concepts: center of drag, center of mass, and momentum and impulse. Then the class tests four combinations of propellants (air, water) and center of mass (weight added fore or aft) to see how these variables affect rocket distance and hang time. From what they learn, student pairs create their own rockets from plastic bottles with cardboard fins and their choices of propellant and center of mass placement, which they test and refine before a culminating engineering field day competition. Teams design for maximum distance or hang time; adding a parachute is optional. Students learn that engineering failures during design and testing are just steps along the way to success.

Subject:
Career and Technical Education
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Duff Harrold
Sara Pace
Date Added:
02/17/2021
Water Dance: Integrating Science, Literacy, Art, and Movement
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article describes ways to supplement a science unit on the water cycle with the book Water Dance by Thomas Locker. Ideas for art, writing, poetry, and creative movement are included.

Subject:
Physical Science
Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Jessica Fries-Gaither
Date Added:
08/01/2008
Water Use and Conservation: Data Analysis for Central Tendency
Read the Fine Print
Educational Use
Rating
0.0 stars

Students collect a large set of data (approximately 60 sets) of individual student’s water use and learn how to use spreadsheets to graph the data and find mean, median, mode, and range. They compared their findings to the national average of water use per person per day and use it to evaluate how much water a municipality would need in the event of a recovery from a water shutdown. This analysis activity introduces students to the concept of central tendencies and how to use spreadsheets to find them.

Subject:
Life Science
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Jackie Gartner
Date Added:
08/01/2019
Waves Go Public!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply everything they have learned over the course of the associated lessons about waves, light properties, the electromagnetic spectrum, and the structure of the eye, by designing devices that can aid color blind people in distinguishing colors. Students learn about the engineering design process and develop three possible solutions to the engineering design challenge outlined in lesson 1 of this unit. They create posters to display their three design ideas and the comparisons used to select the best design. Then, students create brochures for their final design ideas, and "sell" the ideas to their "client." Through this activity, students complete the legacy cycle by "going public" with the creation of their informative posters and brochures that explain their designs, as well as color blindness and how people see color, in "client" presentations.

Subject:
Biology
Career and Technical Education
Life Science
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Date Added:
02/17/2021
Waves: The Three Color Mystery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a challenge question concerning color blindness and asked to use engineering principles to design devices to help people who are color blind. Using the legacy cycle as a model, this unit is comprised of five lessons designed to teach wave properties, the electromagnetic spectrum, and the anatomy of the human eye in an interactive format that introduces engineering applications and real-world references. It culminates with an activity in which student teams apply what they have learned to design devices that can aid people with colorblindness in distinguishing colors— as evidenced by their creation of brainstorming posters, descriptive brochures and short team presentations, as if they were engineers reporting to clients. Through this unit, students become more aware of the connections between the biology of the eye and the physical science concept of light, and gain an understanding of how those scientific concepts relate to the field of engineering.

Subject:
Physical Science
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Date Added:
02/17/2021
What Makes an Eruption Explosive?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the underlying factors that can contribute to Plinian eruptions (which eject large amounts of pumice, gas and volcanic ash, and can result in significant death and destruction in the surrounding environment), versus more gentle, effusive eruptions. Students explore two concepts related to the explosiveness of volcanic eruptions, viscosity and the rate of degassing, by modelling the concepts with the use of simple materials. They experiment with three fluids of varying viscosities, and explore the concept of degassing as it relates to eruptions through experimentation with carbonated beverage cans. Finally, students reflect on how the scientific concepts covered in the activity connect to useful engineering applications, such as community evacuation planning and implementation, and mapping of safe living zones near volcanoes. A PowerPoint® presentation and student worksheet are provided.

Subject:
Chemistry
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Austin Blaser
Helge Gonnermann
Nathan Truong
Thomas Giachetti
Date Added:
02/17/2021
What Soundproofing Material Works Best?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students first explore different materials to see what types reduce the most amount of sound when placed in a box. Each group is assigned a different material and they fill their box with that specific material. Students measure the sound level of a tone playing from inside the box using a decibel reader from outside the box. Students share this data with the class and analyze which types of materials absorb the most sound and which reflect the most sound.

Subject:
Engineering
Mathematics
Measurement and Data
Physical Science
Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Emma Cipriani
Geanna Schwaegerle
La’Nise Gray
Natalie Jackson
Date Added:
03/01/2019
What is a Circular Economy?
Unrestricted Use
Public Domain
Rating
0.0 stars

In this Science 101 video, principal materials scientist Jessica Macholz and postdoctoral scholar Sam Hunt delve into the forefront of scientific innovation aimed at propelling society towards a circular economy, significantly curbing waste and the depletion of natural resources.

Subject:
Engineering
Environmental Science
Physical Science
Science
Material Type:
Audio/Video
Provider:
Argonne National Laboratory
Provider Set:
Science101
Author:
Argonne National Laboratory
Date Added:
11/08/2024
When Should I Drink My Hot Chocolate?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as food science engineers as they explore and apply their understanding of cooling rate and specific heat capacity by completing two separate, but interconnected, tasks. In Part 1, student groups conduct an experiment to explore the cooling rate of a cup of hot chocolate. They collect and graph data to create a mathematical model that represents the cooling rate, and use an exponential decay regression to determine how long a person should wait to drink the cup of hot chocolate at an optimal temperature. In Part 2, students investigate the specific heat capacity of the hot chocolate. They determine how much energy is needed to heat the hot chocolate to an optimal temperature after it has cooled to room temperature. Two activity-guiding worksheets are included.

Subject:
Algebra
Chemistry
Mathematics
Physical Science
Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Palacios
Date Added:
02/17/2021
Wind Patterns and Hydropower in the Desert?!
Read the Fine Print
Educational Use
Rating
0.0 stars

Global wind patterns are dictated by the movement of the Earth on its axis and are significant factors in determining the climate for regions of the planet. Students learn how the Coriolis effect and Hadley convection cells determine the location of deserts on Earth. They manipulate inflated plastic globes to discover how the Coriolis effect drives wind clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. Then they incorporate latitudinal differences onto this modeling exercise to understand why deserts form at 30 degrees north and south of the equator. Once students understand the importance of global winds, they discuss hydropower in the desert. They compare and contrast two case studies: China’s Three Gorges Dam, and Chile’s proposed plant in the Atacama Desert that would creatively use solar power to move seawater up to the top of a mountain so that it can flow back down and generate power. Students note the economic, environmental, cultural and social impacts, issues and benefits of both power plants. Then they reflect, write, debate and discuss their ideas and opinions using evidence from the case studies and their own research.

Subject:
Engineering
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Ashley Martin
Dale Gaddis
Hannah Brooks
Lazar Trifunovic
Shay Marceau
Date Added:
04/25/2017
Wind-Powered Sail Cars
Read the Fine Print
Educational Use
Rating
0.0 stars

Student pairs design and construct small, wind-powered sail cars using limited quantities of drinking straws, masking tape, paper and beads. Teams compete to see which sail car travels the farthest when pushed by the wind (simulated by the use of an electric fan). Students learn about wind and kinetic and renewable energy, and follow the steps of the engineering design process to imagine, create, test, evaluate and refine their sail cars. This activity is part of a unit in which multiple activities are brought together for an all-day school/multi-school concluding “engineering field day” competition.

Subject:
Engineering
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Eric Anderson
Date Added:
01/01/2015
Wirelessly Control Lights and Motors  Using XBee Communication!
Read the Fine Print
Educational Use
Rating
0.0 stars

From remote-controlled cars, to sensors relaying agricultural data from a field to farmhouses miles away, wireless communication enables users to “cut the cord” for their projects. For this maker challenge, students apply what they learned about serial communication during the previous Arduino maker challenge (Make and Control a Servo Arm with Your Computer) and learn how to send signals from one system to another using XBee radio communication modules. By activity end, expect students to be able to control LEDs and motors wirelessly using Arduino microcontrollers and XBee shields. This is a great activity for students to explore and come to understand the concept of the Internet of things.

Subject:
Computer Science
Engineering
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
05/23/2018