This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves …
This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves using motors and wheels. Then students relate the concepts of decision-making actuation and motion in humans to their parallels in mechanized robots, and understand the common themes associated with movement.
Students are given a difficult challenge that requires they integrate what they …
Students are given a difficult challenge that requires they integrate what they have learned so far in the unit about wait blocks, loops and switches. They incorporate these tools into their programming of the LEGO MINDSTORMS(TM) NXT robots to perform different tasks depending on input from a sound sensor and two touch sensors. This activity helps students understand how similar logic is implemented for other every day device operations via computer programs. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.
After completing the associated lesson, students test their understanding in two programming …
After completing the associated lesson, students test their understanding in two programming tasks that utilize LEGO MINDSTORMS(TM) NXT robots and sound/touch sensors. In the first challenge, students become acquainted with wait blocks by designing programs to simply make robots move forward until "hearing" a noise, and then turn left. The second, more challenging activity pushes students to fully understand the potential of wait blocks. They create programs that make the robots change speed several times when a touch sensor is pressed. Students gain practice in the iterative design-program-test-redesign process. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.
Students are introduced to an important engineering element the gear. Different types …
Students are introduced to an important engineering element the gear. Different types of gears are used in many engineering devices, including wind-up toys, bicycles, cars and non-digital clocks. Students learn about various types of gears and how they work in machines. They handle and combine LEGO spur gears as an exercise in gear ratios. They see how gears and different gear train arrangements are used to change the speed, torque and direction of a power source. This prepares them to apply this knowledge in four associated activities in order to create successful solutions to design challenges that use LEGO MINDSTORMS(TM) NXT robots. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
Students learn about electrical connections, how they work and their pervasiveness in …
Students learn about electrical connections, how they work and their pervasiveness in our world. They consider the usefulness of wireless electrical connections for connecting electrical devices. Morse code is introduced as a communication method that takes advantage of on/off states to transmit messages by electrical bursts sent via wires, light or sound. They learn the Morse code rules and translate a few phrases into Morse code. Specifically, they learn about a wireless connection type known as Bluetooth that can be used to control LEGO robots remotely from Android devices, which leads into the associated activity.
Through four lesson and four activities, students are introduced to the logic …
Through four lesson and four activities, students are introduced to the logic behind programming. Starting with very basic commands, they develop programming skills while they create and test programs using LEGO MINDSTORMS(TM) NXT robots. Students apply new programming tools move blocks, wait blocks, loops and switches in order to better navigate robots through mazes. Through programming challenges, they become familiar with the steps of the engineering design process. The unit is designed to be motivational for student learning, so they view programming as a fun activity. This unit is the third in a series. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.
Students learn about electric motors and rotational sensors. They learn that motors …
Students learn about electric motors and rotational sensors. They learn that motors convert electrical energy to mechanical energy and typically include rotational sensors to enable distance measuring. They also learn the basics about gear trains and gear ratios. Students create a basic program using the LEGO MINDSTORMS(TM) NXT interface to control a motor to move a small robot. Then, through a 10-minute mini-activity, they make measurements and observations to test a LEGO rotation sensor's ability to measure distance in rotations. This prepares them for the associated activity during which they calculate how many wheel rotations are needed to travel a distance. A PowerPoint® presentation, worksheet and pre/post quizzes are provided.
Students are introduced to the basic concepts of computer programs, algorithms and …
Students are introduced to the basic concepts of computer programs, algorithms and programming. Using a few blindfolds and a simple taped floor maze exercise, students come to understand that computers rely completely upon instructions given in programs and thus programs must be comprehensive and thorough. Then students learn to program using the LEGO MINDSTORMS(TM) NXT software. They create and test basic programs, first using just the LEGO NXT intelligent brick, and then using basic movement commands with the LEGO NXT software on computers. A detailed PowerPoint® presentation, plus a worksheet and pre/post quizzes are provided.
This lesson introduces students to the major characteristics of robots. The associated …
This lesson introduces students to the major characteristics of robots. The associated activity uses the LEGO MINDSTORMS(TM) NXT system as an example. Before studying robots in more detail, it is important for students to consider the many items they encounter in their daily lives that are robots so they can explore ways engineers can utilize robotics to solve problems in everyday life.The activity also serves as an introduction to the LEGO NXT system so that students may utilize it as an educational tool in subsequent lessons and activities.
Students gain a rigorous background in the primary human "sensors," as preparation …
Students gain a rigorous background in the primary human "sensors," as preparation for comparing them to some electronic equivalents in the associated activity. A review of human vision, hearing, smell, taste and touch, including the anatomies and operational principles, is delivered through a PowerPoint® presentation. Students learn the concept of "stimulus-sensor-coordinator-effector-response" to describe the human and electronic sensory processes. Student pairs use blindfolds, paper towels and small candies in a taste/smell sensory exercise. They take pre/post quizzes and watch two short online videos. Concepts are further strengthened by conducting the associated activity the following day, during which they learn about electronic touch, light, sound and ultrasonic sensors and then "see" sound waves while using microphones connected to computers running (free) Audacity® software.
In an interactive and game-like manner, students learn about the mechanical advantage …
In an interactive and game-like manner, students learn about the mechanical advantage that is offered by gears. By virtue of the activity's mechatronics presentation, students learn to study a mechanical system as a dynamic system under their control as opposed to a static image. The system presented is of two motorized racing cars built using the LEGO® MINDSTORMS® robotics platform. The altered variable between the two systems is the gear train; one is geared up for speed and the other is geared down for torque. Students collect and analyze data to reinforce particular aspects and effects of mechanical advantage.
Students learn about trigonometry, geometry and measurements while participating in a hands-on …
Students learn about trigonometry, geometry and measurements while participating in a hands-on interaction with LEGO® MINDSTORMS® NXT technology. First they review fundamental geometrical and trigonometric concepts. Then, they estimate the height of various objects by using simple trigonometry. Students measure the height of the objects using the LEGO robot kit, giving them an opportunity to see how sensors and technology can be used to measure things on a larger scale. Students discover that they can use this method to estimate the height of buildings, trees or other tall objects. Finally, students synthesize their knowledge by applying it to solve similar problems. By activity end, students have a better grasp of trigonometry and its everyday applications.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.