In this lesson, students are shown the very basics of navigation. The …
In this lesson, students are shown the very basics of navigation. The concepts of relative and absolute location, latitude, longitude and cardinal directions are discussed, as well as the use and principles of a map and compass.
In this lesson, the students will conduct an investigation to purify water. …
In this lesson, the students will conduct an investigation to purify water. Students will engineer a method for cleaning water, discover the most effective way to filter water, and practice conducting a scientific experiment.
When you walk or drive around your neighborhood, what do the roofs …
When you walk or drive around your neighborhood, what do the roofs look like? What if you lived in an area with a different climate, how might that affect the style of roofs that you see? Through this introductory engineering activity, students explore the advantages of different roof shapes for different climates or situations. They observe and discuss what happens in a teacher demo when a "snow load" (sifted cups of flour) is placed on three model roof shapes.
Students learn about coordinate systems in general by considering questions concerning what …
Students learn about coordinate systems in general by considering questions concerning what it is that the systems are expected do, and who decided how they look. They attempt to make their own coordinate systems using a common area across all groups and compete to see who can make the best one. Then they analyze why it is that some systems work better than others and consider what those observations mean for evaluating and choosing geographic coordinate systems commonly available today.
The teacher leads a discussion in which students identify the physical needs …
The teacher leads a discussion in which students identify the physical needs of animals, and then speculate on the needs of plants. With guidance from the teacher, the students then help design an experiment that can take place in the classroom to test whether or not plants need light and water in order to grow. Sunflower seeds are planted in plastic cups, and once germinated, are exposed to different conditions. In particular, within the classroom setting it is easy to test for the effects of light versus darkness, and watered versus non-watered conditions. During exposure of the plants to these different conditions, students measure growth of the seedlings every few days using non-standard measurement. After a few weeks, they compare the growth of plants exposed to the different conditions, and make pictorial bar graphs that demonstrate these comparisons.
Students use DNA profiling to determine who robbed a bank. After they …
Students use DNA profiling to determine who robbed a bank. After they learn how the FBI's Combined DNA Index System (CODIS) is used to match crime scene DNA with tissue sample DNA, students use CODIS principles and sample DNA fragments to determine which of three suspects matches evidence obtain at a crime location. They communicate their results as if they were biomedical engineers reporting to a police crime scene investigation.
Drinking water comes from many different sources, including surface water and groundwater. …
Drinking water comes from many different sources, including surface water and groundwater. Environmental engineers analyze the physical properties of groundwater to predict how and where surface contaminants will travel. In this lesson, students will learn about several possible scenarios of contamination to drinking water. They will analyze the movement of example contaminants through groundwater such as environmental engineers must do (i.e., engineers identify and analyze existing contamination of water sources in order to produce high quality drinking water for consumers).
How can you tell if harmful bacteria are growing in your food? …
How can you tell if harmful bacteria are growing in your food? Students learn to culture bacteria in order to examine ground meat and bagged salad samples, looking for common foodborne bacteria such as E. coli or salmonella. After 2-7 days of incubation, they observe and identify the resulting bacteria. Based on their first-hand experiences conducting this conventional biological culturing process, they consider its suitability in meeting society's need for ongoing detection of harmful bacteria in its food supply, leading them to see the need for bioengineering inventions for rapid response bio-detection systems.
Students teams each use a bar magnet, sheet of paper and iron …
Students teams each use a bar magnet, sheet of paper and iron shavings to reveal the field lines as they travel around a magnet. They repeat the activity with an electromagnet made by wrapping thin wire around a nail and connecting either wire end to a battery. They see that the current flowing through a wire produces a magnetic field around the wire and that this magnetic field induced by electricity is no different than that produced by a bar magnet. The experience helps to solidify the idea that electricity and magnetism are deeply interrelated.
Students are introduced to the concept of a dam and its potential …
Students are introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thirsty County.
In an interactive and game-like manner, students learn about the mechanical advantage …
In an interactive and game-like manner, students learn about the mechanical advantage that is offered by gears. By virtue of the activity's mechatronics presentation, students learn to study a mechanical system as a dynamic system under their control as opposed to a static image. The system presented is of two motorized racing cars built using the LEGO® MINDSTORMS® robotics platform. The altered variable between the two systems is the gear train; one is geared up for speed and the other is geared down for torque. Students collect and analyze data to reinforce particular aspects and effects of mechanical advantage.
Students will learn the difference between global, prevailing and local winds. In …
Students will learn the difference between global, prevailing and local winds. In this activity, students will make a wind vane out of paper, a straw and a soda bottle and use it to measure wind direction over time. Finally, they will analyze their data to draw conclusions about the prevailing winds in their area.
Students build their own simple conductivity tester and explore whether given solid …
Students build their own simple conductivity tester and explore whether given solid materials and solutions of liquids are good conductors of electricity.
In this lesson, students will learn about kites and gliders and how …
In this lesson, students will learn about kites and gliders and how these models can help in understanding the concept of flight. Students will design and build their own balsa wood models and experiment with different control surfaces. The goal of this lesson is for students to apply their existing knowledge about the four forces affecting flight and apply engineering design to develop a sound glider. They will also communicate the reasoning and results of any design modifications made.
Students reinforce an antenna tower made from foam insulation so that it …
Students reinforce an antenna tower made from foam insulation so that it can withstand a 480 N-cm bending moment (torque) and a 280 N-cm twisting moment (torque) with minimal deflection. During one class period, students discuss the problem, run the initial bending and torsion tests and graph the results. During the following class periods, students design, construct and test sturdier towers, and graph the results.
Students are challenged to design and build wind chimes using their knowledge …
Students are challenged to design and build wind chimes using their knowledge of physics and sound waves, and under given constraints such as weight, cost and number of musical notes it must generate. They make mathematical computations to determine the pipe lengths.
Students learn about wind energy by making a pinwheel to model a …
Students learn about wind energy by making a pinwheel to model a wind turbine. Just like engineers, they decide where and how their turbine works best by testing it in different areas of the playground.
In this activity, students develop an understanding of how engineers use wind …
In this activity, students develop an understanding of how engineers use wind to generate electricity. They will build a model anemometer to better understand and measure wind speed.
Students learn how engineers transform wind energy into electrical energy by building …
Students learn how engineers transform wind energy into electrical energy by building their own miniature wind turbines and measuring the electrical current it produces. They explore how design and position affect the electrical energy production.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.