(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo de 25 días, los estudiantes trabajan con figuras dos y tridimensionales. El volumen se introduce a los estudiantes a través de la exploración concreta de unidades cúbicas y culmina con el desarrollo de la fórmula de volumen para los prismas rectangulares correctos. La segunda mitad del módulo se convierte en extender a los estudiantes la comprensión de las figuras bidimensionales. Los estudiantes combinan el conocimiento previo del área con el conocimiento recién adquirido de la multiplicación por fracción para determinar el área de las figuras rectangulares con longitudes laterales fraccionadas. Luego participan en la construcción práctica de formas bidimensionales, desarrollando una base para clasificar las formas razonando sobre sus atributos. Este módulo llena un vacío entre el trabajo de Grado 4 S con figuras bidimensionales y el trabajo de grado 6 con volumen y área.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this 25-day module, students work with two- and three-dimensional figures. Volume is introduced to students through concrete exploration of cubic units and culminates with the development of the volume formula for right rectangular prisms. The second half of the module turns to extending students understanding of two-dimensional figures. Students combine prior knowledge of area with newly acquired knowledge of fraction multiplication to determine the area of rectangular figures with fractional side lengths. They then engage in hands-on construction of two-dimensional shapes, developing a foundation for classifying the shapes by reasoning about their attributes. This module fills a gap between Grade 4s work with two-dimensional figures and Grade 6s work with volume and area.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
El módulo 3, que se extiende a tres dimensiones, se basa en la comprensión de los estudiantes de la congruencia en el módulo 1 y la similitud en el módulo 2 para probar fórmulas de volumen para sólidos. Los materiales estudiantiles consisten en las páginas del estudiante para cada lección en el módulo 3. Los materiales listos para la copia son una colección de las evaluaciones del módulo, boletos de salida de la lección y ejercicios de fluidez de los materiales del maestro.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Module 3, Extending to Three Dimensions, builds on students understanding of congruence in Module 1 and similarity in Module 2 to prove volume formulas for solids. The student materials consist of the student pages for each lesson in Module 3. The copy ready materials are a collection of the module assessments, lesson exit tickets and fluency exercises from the teacher materials.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En el primer tema de este módulo de 15 días, los estudiantes aprenden el concepto de una función y por qué las funciones son necesarias para describir conceptos geométricos y ocurrencias en la vida cotidiana. Una vez que se proporciona una definición formal de una función, los estudiantes consideran funciones de tarifas discretas y continuas y comprenden la diferencia entre los dos. Los estudiantes aplican su conocimiento de las ecuaciones lineales y sus gráficos del módulo 4 a los gráficos de funciones lineales. Los estudiantes inspeccionan la tasa de cambio de funciones lineales y concluyen que la tasa de cambio es la pendiente de la gráfica de una línea. Aprenden a interpretar la ecuación y = mx+b como definir una función lineal cuyo gráfico es una línea. Los estudiantes comparan funciones lineales y sus gráficos y también obtienen experiencia con funciones no lineales. En el segundo y último tema de este módulo, los estudiantes extienden lo que aprendieron en el grado 7 sobre cómo resolver los problemas del mundo real y las matemáticas relacionadas con el volumen de sólidos simples para incluir problemas que requieren las fórmulas para conos, cilindros y esferas.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In the first topic of this 15 day module, students learn the concept of a function and why functions are necessary for describing geometric concepts and occurrences in everyday life. Once a formal definition of a function is provided, students then consider functions of discrete and continuous rates and understand the difference between the two. Students apply their knowledge of linear equations and their graphs from Module 4 to graphs of linear functions. Students inspect the rate of change of linear functions and conclude that the rate of change is the slope of the graph of a line. They learn to interpret the equation y=mx+b as defining a linear function whose graph is a line. Students compare linear functions and their graphs and gain experience with non-linear functions as well. In the second and final topic of this module, students extend what they learned in Grade 7 about how to solve real-world and mathematical problems related to volume from simple solids to include problems that require the formulas for cones, cylinders, and spheres.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This interactive game has students apply skills in estimation, measurement, and basic …
This interactive game has students apply skills in estimation, measurement, and basic addition using pearls. Students are asked to estimate the number of pearls in a treasure chest by making predictions and using number sense. The skills are appropriate for students in grades th3-5. Additional features include links to related history, lesson plans, and articles on pearls. CCSS.Math.Content.3.MD.A.2 Measure and estimate liquid volumes and masses of objects using standard units
Given an assortment of unknown metals to identify, student pairs consider what …
Given an assortment of unknown metals to identify, student pairs consider what unique intrinsic (aka intensive) metal properties (such as density, viscosity, boiling or melting point) could be tested. For the provided activity materials (copper, aluminum, zinc, iron or brass), density is the only property that can be measured so groups experimentally determine the density of the "mystery" metal objects. They devise an experimental procedure to measure mass and volume in order to calculate density. They calculate average density of all the pieces (also via the graphing method if computer tools area available). Then students analyze their own data compared to class data and perform error analysis. Through this inquiry-based activity, students design their own experiments, thus experiencing scientific investigation and experimentation first hand. A provided PowerPoint(TM) file and information sheet helps to introduce the five metals, including information on their history, properties and uses.
Students find the volume and surface area of a rectangular box (e.g., …
Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things.
Honored "for his inspired writings which, . . . exemplify the classical …
Honored "for his inspired writings which, . . . exemplify the classical humanitarian ideals and high qualities of style," Hermann Hesse (1877-1962 CE) was the 1946 recipient of the Nobel Prize in Literature. Read about his contributions to the world of literature through this website, which is organized into the following sections: "Presentation Speech," "Autobiography," "Acceptance Speech," and "Other Resources."
This lesson will give a general overview of how organelles help a …
This lesson will give a general overview of how organelles help a cell function and will explain the importance of organelles in increasing surface area to volume ratios. It is 2 of 3 in the series titled "Organelles."
This lesson will give a general overview of how organelles help a …
This lesson will give a general overview of how organelles help a cell function and will explain the importance of organelles in increasing surface area to volume ratios. It is 3 of 3 in the series titled "Organelles."
This short video and interactive assessment activity is designed to give fifth …
This short video and interactive assessment activity is designed to give fifth graders an overview of conversion among units of measure for capacity (english units).
Students investigate the property dependence between liquid and solid interfaces and determine …
Students investigate the property dependence between liquid and solid interfaces and determine observable differences in how liquids react to different solid surfaces. They compare copper pennies and plastic "coins" as the two test surfaces. Using an eye dropper to deliver various fluids onto the surfaces, students determine the volume and mass of a liquid that can sit on the surface. They use rulers, scales, equations of volume and area, and other methods of approximation and observation, to make their own graphical interpretations of trends. They apply what they learned to design two super-surfaces (from provided surface treatment materials) that arecapable of holding the most liquid by volume and by mass. Cost of materials is a parameter in their design decisions.
An interactive simulation that teaches about density, mass, and volume through explorations …
An interactive simulation that teaches about density, mass, and volume through explorations of mass and volume with different objects. This simulation can either be downloaded or played online and includes handouts, lesson plans, and additional materials.
What determines the concentration of a solution? Learn about the relationships between …
What determines the concentration of a solution? Learn about the relationships between moles, liters, and molarity by adjusting the amount of solute and solution volume. Change solutes to compare different chemical compounds in water.
This simulation lets you see sound waves. Adjust the frequency or volume …
This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.
From drinking fountains at playgrounds, water systems in homes, and working bathrooms …
From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.
To further their understanding of sound energy, students identify the different pitches …
To further their understanding of sound energy, students identify the different pitches and frequencies created by a vibrating ruler and a straw kazoo. They create high- and low-pitch sound waves.
Working in teams, students learn the basics of fluid power design using …
Working in teams, students learn the basics of fluid power design using the PFPD as their investigative platform. They investigate the similarities and differences between using pneumatic and hydraulic power in the PFPD. With the main components of the PFPD already assembled, student groups determine the correct way to connect the valves to the actuators using colored, plastic tubing. Once connected, they compete in timed challenges to test their abilities to separate material out of containers using the PFPDs. NOTE: No special pre-requisite knowledge is required for students to be successful in this activity.
A huge collection of teacher resources to aide in the teaching of …
A huge collection of teacher resources to aide in the teaching of all types of metric measurement: length, distance, mass, weight, capacity, and volume. Activities include measuring, estimating, converting, investigating, and finding equivalent measures. There are worksheets, smartboard presentations, powerpoint presentation, and flash presentations to aide both the teacher and the student.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.