This task provides a simple but interesting and realistic context in which …
This task provides a simple but interesting and realistic context in which students are led to set up a rational equation (and a rational inequality) in one variable, and then solve that equation/inequality for an unknown variable.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Consider three points in the plane, $P=(-4, 0), Q=(-1, 12)$ and $R=(4, 32)$. Find the equation of the line through $P$ and $Q$. Use your equation in (a...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Jason and Arianna are working on solving the equations \begin{align} 6x + 17y &= 100\\ 5x + 9y &= 86. \end{align} Rounding their answer to the nearest ...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Without graphing, construct a system of two linear equations where $(-2,3)$ is a solution to the first equation but not to the second equation, and whe...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: What is the sum of all integer solutions to $1\lt (x-2)^2\lt 25$?...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: The sums of three whole numbers taken in pairs are 12, 17, and 19. What is the middle number?...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: This task will investigate the intersection points of the circle $C$ of radius 1 centered at $(0,0)$ and different lines passing through the point $(0,...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: The following is a student solution to the inequality \frac{5}{18} - \frac{x-2}{9} \leq \frac{x-4}{6}. \begin{align} \frac{5}{18} - \frac{x-2}{9} & \le...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Enrico has learned a geometric technique for ''completing the square'' to find the solutions of quadratic equations. To solve the equation $x^2 + 6x + ...
This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important aspects of the task and its potential use.
Use these ARTHUR activities to help children understand themselves and those around …
Use these ARTHUR activities to help children understand themselves and those around them. Topics include self-esteem, understanding others, and cultural diversity.
Explore how people are alike and different in these ARTHUR activities. From …
Explore how people are alike and different in these ARTHUR activities. From interviewing classmates to establishing local pen pals to creating neighborhood maps, the activities will help children understand and appreciate what we share in common and what makes each of us unique.
Discover how to overcome obstacles to take civic action for a cause …
Discover how to overcome obstacles to take civic action for a cause you care about, in this video from the PBS KIDS series ARTHUR. After watching the video, students explore the steps involved in creating a campaign for change. Included are support materials for teachers. [10:33]
Discover how resolving conflicts can lead to a better outcome for both …
Discover how resolving conflicts can lead to a better outcome for both sides from the PBS KIDS series ARTHUR. Included are support materials for teachers. [11:26]
The problem presents a context where a quadratic function arises. Careful analysis, …
The problem presents a context where a quadratic function arises. Careful analysis, including graphing, of the function is closely related to the context. The student will gain valuable experience applying the quadratic formula and the exercise also gives a possible implementation of completing the square.
Article provides excellent tips and strategies for building comprehension and critical thinking …
Article provides excellent tips and strategies for building comprehension and critical thinking skills in Social Studies. It describes some of the challenges students have with reading and understanding their textbooks.
They offer a variety of options including a PD Online interactive course …
They offer a variety of options including a PD Online interactive course catalog, free webinar series, extensive library of videos demonstrating effective teaching practices through their PD Infocus, their My Teach Source provides classroom-focused topic packs with teacher-driven articles, videos, checklists, rubrics, reproducibles, links, and more to begin implementing right away.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.