Proteins

Types and Functions of Proteins

Enzymes, which living cells produce, are catalysts in biochemical reactions (like digestion) and are usually complex or conjugated proteins. Each enzyme is specific for the substrate (a reactant that binds to an enzyme) upon which it acts. The enzyme may help in breakdown, rearrangement, or synthesis reactions. We call enzymes that break down their substrates catabolic enzymes. Those that build more complex molecules from their substrates are anabolic enzymes, and enzymes that affect the rate of reaction are catalytic enzymes. Note that all enzymes increase the reaction rate and, therefore, are organic catalysts. An example of an enzyme is salivary amylase, which hydrolyzes its substrate amylose, a component of starch.

Hormones are chemical-signaling molecules, usually small proteins or steroids, secreted by endocrine cells that act to control or regulate specific physiological processes, including growth, development, metabolism, and reproduction. For example, insulin is a protein hormone that helps regulate the blood glucose level. Table lists the primary types and functions of proteins.

Protein Types and Functions
TypeExamplesFunctions
Digestive EnzymesAmylase, lipase, pepsin, trypsinHelp in food by catabolizing nutrients into monomeric units
TransportHemoglobin, albuminCarry substances in the blood or lymph throughout the body
StructuralActin, tubulin, keratinConstruct different structures, like the cytoskeleton
HormonesInsulin, thyroxineCoordinate different body systems' activity
DefenseImmunoglobulinsProtect the body from foreign pathogens
ContractileActin, myosinEffect muscle contraction
StorageLegume storage proteins, egg white (albumin)Provide nourishment in early embryo development and the seedling

Proteins have different shapes and molecular weights. Some proteins are globular in shape; whereas, others are fibrous in nature. For example, hemoglobin is a globular protein, but collagen, located in our skin, is a fibrous protein. Protein shape is critical to its function, and many different types of chemical bonds maintain this shape. Changes in temperature, pH, and exposure to chemicals may lead to permanent changes in the protein's shape, leading to loss of function, or denaturation. Different arrangements of the same 20 types of amino acids comprise all proteins. Two rare new amino acids were discovered recently (selenocystein and pirrolysine), and additional new discoveries may be added to the list.

2 of 9