Students solve division problems by changing them into multiplication problems. They then …
Students solve division problems by changing them into multiplication problems. They then use the relationship between multiplication and division to determine the sign when dividing positive and negative numbers in general.Key ConceptsThe rules for determining the sign of a quotient are the same as those for a product: If the two numbers have the same sign, the quotient is positive; if they have different signs, the quotient is negative. This can be seen by rewriting a division problem as a multiplication of the inverse.For example, consider the division problem −27 ÷ 9. Here are two ways to use multiplication to determine the sign of the quotient:The quotient is the value of x in the multiplication problem 9 ⋅ x = −27. Because 9 is positive, the value of x must be negative in order to get the negative product.The division −27 ÷ 9 is equivalent to the multiplication −27 ⋅ 19. Because this is the product of a negative number and a positive number, the result must be negative.Goals and Learning ObjectivesUse the relationship between multiplication and division to solve division problems involving positive and negative numbers.Understand how to determine whether a quotient will be positive or negative.
Students use properties of multiplication to prove that the product of any …
Students use properties of multiplication to prove that the product of any two negative numbers is positive and the product of a positive number and a negative number is negative.Key ConceptsMultiplication properties can be used to develop the rules for multiplying positive and negative numbers.Students are familiar with the properties from earlier grades:Associative property of multiplication: Changing the grouping of factors does not change the product. For any numbers a, b, and c, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).Commutative property of multiplication: Changing the order of factors does not change the product. For any numbers a and b, a ⋅ b = b ⋅ a.Multiplicative identity property of 1: The product of 1 and any number is that number. For any number a, a ⋅ 1 = 1 ⋅ a = a.Property of multiplication by 0: The product of 0 and any number is 0. For any number a, a ⋅ 0 = 0 ⋅ a = 0.Property of multiplication by −1: The product of −1 and a number is the opposite of that number. For any number a, (−1) ⋅ a = −a.Existence of multiplicative inverses: Dividing any number by the same number equals 1. Multiplying any number by its multiplicative inverse equals 1. For every number a ≠ 0, a ÷ a = a ⋅ 1a = 1a ⋅ a = 1.Distributive property: Multiplying a number by a sum is the same as multiplying the number by each term and then adding the products. For any numbers a, b, and c, a ⋅ (b + c) = a ⋅ b + a ⋅ c.In this lesson, students will encounter a proof showing that the product of a positive number and a negative number is negative and two different proofs that the product of two negative numbers is positive. Two alternate proofs are as follows.Proof that the product of two negative numbers is positive:Represent the negative numbers as −a and −b, where a and b are positive.(−a) ⋅ (−b)Original expression= ((−1) ⋅ a) ⋅ ((−1) ⋅ b) Property of multiplication by −1= (−1) ⋅ (a ⋅ (−1)) ⋅ b Associative property of multiplication= (−1) ⋅ ((−1) ⋅ a) ⋅ b Commutative property of multiplication= ((−1) ⋅ (−1)) ⋅ (a ⋅ b) Associative property of multiplication= 1 ⋅ (a ⋅ b) Property of multiplication by −1= a ⋅ b Multiplicative identity property of 1Because a and b are positive, a ⋅ b is positive.Proof that the product of a positive number and a negative number is negative:Let a be the positive number. Let −b be the negative number, where b is positive.a ⋅ (−b)Original expression= a ⋅ ((−1) ⋅ b) Property of multiplication by −1= (a ⋅ (−1)) ⋅ b Associative property of multiplication= ((−1) ⋅ a) ⋅ b Commutative property of multiplication= (−1) ⋅ (a ⋅ b) Associative property of multiplication= −(a ⋅ b) Property of multiplication by −1Because a and b are positive, a ⋅ b is positive, so −(a ⋅ b) must be negative.Goals and Learning ObjectivesReview properties of multiplication.Explain why the product of two negative numbers is positive and the product of a negative number and a positive number is negative.
Students critique and improve their work on the Self Check, then work …
Students critique and improve their work on the Self Check, then work on more addition and subtraction problems.Students solve problems that require them to apply their knowledge of adding and subtracting positive and negative numbers.Key ConceptsTo solve the problems in this lesson, students use their knowledge of addition and subtraction with positive and negative numbers.Goals and Learning ObjectivesUse knowledge of addition and subtraction with positive and negative numbers to write problems that meet given criteria.Assess and critique methods for subtracting negative numbers.Find values of variables that satisfy given inequalities.
Students critique and improve their work on the Self Check. They then …
Students critique and improve their work on the Self Check. They then extend their knowledge with additional problems.Students solve problems that require them to apply their knowledge of multiplying and dividing positive and negative numbers. Students will then take a quiz.Key ConceptsTo solve the problems in the Self Check, students must apply their knowledge of multiplication and division of positive and negative numbers learned throughout the unit.Goals and Learning ObjectivesUse knowledge of multiplication and division of positive and negative numbers to solve problems.
Students explore what happens to a hot air balloon when they add …
Students explore what happens to a hot air balloon when they add or remove units of weight or heat. This activity is an informal exploration of addition and subtraction with positive and negative integers.Key ConceptsThis lesson introduces a balloon simulation for adding and subtracting integers. Positive integers are represented by adding units of heat to air and negative integers are represented by adding units of weight. The balloon is pictured next to a vertical number line. The balloon rises one unit for each unit of heat added or each unit of weight removed. The balloon falls one unit for each unit of weight added or each unit of heat removed from the air.Mathematically, adding 1 to a number and subtracting −1 from a number are equivalent and increase the number by 1. Adding −1 to a number and subtracting 1 from a number are equivalent and decrease the number by 1. Addition and subtraction with positive and negative numbers are explored formally in the next several lessons.Goals and Learning ObjectivesExplore the effects of adding or subtracting positive and negative numbers.
Whole numbers are no better than any others! Practice plotting values on …
Whole numbers are no better than any others! Practice plotting values on the number line as a passionate activist rises up and demands equity for all numbers, including fractions and decimals. A teaching guide with printable resources is included. [3:09]
Given a, b, and c shown on the number line, Sal determines …
Given a, b, and c shown on the number line, Sal determines if statements like -b < c are true. [4:54]
Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.
Practice putting positive and negative numbers in order. For example, -28, 12, …
Practice putting positive and negative numbers in order. For example, -28, 12, -51, and 43. Students receive immediate feedback and have the opportunity to try questions repeatedly, watch a video or receive hints.
Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.
Play a fast-paced video game that involves finding rational numbers on the …
Play a fast-paced video game that involves finding rational numbers on the number line. This game from Math Snacks focuses on using what you know about positive and negative numbers and fractions to place them correctly on the variable number line and retrieve pearls.
Solve an inequality that has negative numbers and a variable. This video …
Solve an inequality that has negative numbers and a variable. This video focuses on using inverse operations to solve for a variable and the importance of flipping the inequality when multiplying or dividing by a negative number.
Find a quick, concise explanation of integers. A helpful diagram is given …
Find a quick, concise explanation of integers. A helpful diagram is given and clearly explained that shows the relationship of integers to other number groups.
Students learn how to simplify multiple positive or negative signs. The resource …
Students learn how to simplify multiple positive or negative signs. The resource consists of lessons with examples, a combining like terms calculator, an equation calculator, and a worksheet to check for comprehension.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.