Updating search results...

Search Resources

420 Results

View
Selected filters:
  • Geometry
Math, Grade 6, Surface Area and Volume, Using A Grid To Calculate The Area Of An Irregular Figure
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents estimate the area of Lake Chad by overlaying a grid on the map of the lake.Key ConceptThe area of an irregular figure can be found by overlaying a grid on the figure. By estimating the number of grid squares the figure covers and multiplying by the area of each square, you can find the approximate area of the figure. The accuracy of the estimate depends on the size of the grid squares. Using a smaller grid leads to a more accurate estimate because more whole grid squares are completely filled. However, using a smaller grid also requires more counting and more combining of partially-filled squares and is, therefore, more time-consuming. Using a larger grid gives a quicker, but rougher, estimate of the area.Goals and Learning ObjectivesUse a grid to find the area of an irregular figure.MaterialsMap of Lake Chad handout (one for each pair of students)Rulers, optional (one for each pair of students)

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Surface Area and Volume, Volume Formula For Rectangular Prisms
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents build prisms with fractional side lengths by using unit-fraction cubes (i.e., cubes with side lengths that are unit fractions, such as 13 unit or 14 unit). Students verify that the volume formula for rectangular prisms, V = lwh or V = bh, applies to prisms with side lengths that are not whole numbers.Key ConceptsIn fifth grade, students found volumes of prisms with whole-number dimensions by finding the number of unit cubes that fit inside the prisms. They found that the total number of unit cubes required is the number of unit cubes in one layer (which is the same as the area of the base) times the number of layers (which is the same as the height). This idea was generalized as V = lwh, where l, w, and h are the length, width, and height of the prism, or as V = Bh, where B is the area of the base of the prism and h is the height.Unit cubes in each layer = 3 × 4Number of layers = 5Total number of unit cubes = 3 × 4 × 5 = 60Volume = 60 cubic unitsIn this lesson, students extend this idea to prisms with fractional side lengths. They build prisms using unit-fraction cubes. The volume is the number of unit-fraction cubes in the prism times the volume of each unit-fraction cube. Students show that this result is the same as the volume found by using the formula.For example, you can build a 45-unit by 35-unit by 25-unit prism using 15-unit cubes. This requires 4 × 3  × 2, or 24, 15-unit cubes. Each 15-unit cube has a volume of 1125 cubic unit, so the total volume is 24125 cubic units. This is the same volume obtained by using the formula V = lwh:V=lwh=45×35×25=24125.15-unit cubes in each layer = 3 × 4Number of layers = 2Total number of 15-unit cubes = 3 × 4 × 2 =  24Volume = 24 × 1125 = 24125 cubic units Goals and Learning ObjectivesVerify that the volume formula for rectangular prisms, V = lwh or V = Bh, applies to prisms with side lengths that are not whole numbers.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 7, Algebraic Reasoning, Analyzing The Properties Of An Inequality
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students write and solve inequalities in order to solve two problems. One of the problems is a real-world problem that involves selling a house and paying the real estate agent a commission. The second problem involves the relationship of the lengths of the sides of a triangle.Key ConceptsIn this lesson, students again use algebraic inequalities to solve word problems, including real-world situations. Students represent a quantity with a variable, write an inequality to solve the problem, use the properties of inequality to solve the inequality, express the solution in words, and make sure that the solution makes sense.Students explore the relationships of the lengths of the sides of a triangle. They apply the knowledge that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side to solve for the lengths of sides of a triangle using inequalities. They solve the inequality for the length of the third side.Goals and Learning ObjectivesUse an algebraic inequality to solve problems, including real-world problems.Use the properties of inequalities to solve an inequality.

Subject:
Algebra
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Algebraic Reasoning, Geometric Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students write expressions for geometric situations. They examine how different equivalent expressions can show different ways of thinking about the same problem.Key ConceptsStudents use their previous knowledge of how to find the perimeter and area of squares and rectangles. They write algebraic expressions for the perimeter and area of geometric figures. They examine how equivalent expressions, used to represent a problem situation, give clues to the approach the writer of the expression used to solve the problem. In the Challenge Problem, they use the distributive property to find the solution.ELL: For ELLs, access prior knowledge by writing the words area and perimeter on the board. Have students create concept maps associated with area and perimeter. Record students' responses on large poster paper that you can display in the room. The goal is to generate a list of words that students can use as a reference.Goals and Learning ObjectivesAccess prior knowledge of how to find the perimeter and area of squares and rectangles.Write algebraic expressions for finding perimeter or area of figures.Identify equivalent expressions.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Constructions and Angles
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Constructions and Angles

Unit Overview

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Use a protractor and ruler.
Identify different types of triangles and quadrilaterals and their characteristics.

Lesson Flow

After an initial exploratory lesson involving a paper folding activity that gets students thinking in general about angles and figures in a context, the unit is divided into two concept development sections. The first section focuses on types of angles—adjacent, supplementary, complementary, and vertical—and how they are manifested in quadrilaterals. The second section looks at triangles and their properties, including the angle sum, and how this affects other figures.

In the first set of conceptual lessons, students explore different types of angles and where the types of angles appear in quadrilaterals. Students fold paper and observe the angles formed, draw given angles, and explore interactive sketches that test many cases. Students use a protractor and ruler to draw parallelograms with given properties. They explore sketches of parallelograms with specific properties, such as perpendicular diagonals. After concluding the investigation of the angle types, students move on to the next set.

In the second set of conceptual development lessons, students focus on triangles. Students again fold paper to create figures and certain angles, such as complementary angles.

Students draw, using a protractor and ruler, other triangles with given properties. Students then explore triangles with certain known and unknown elements, such as the number of given sides and angles. This process starts with paper folding and drawing and continues with exploration of interactive sketches. Students draw conclusions about which cases allow 0, 1, 2, or an infinite number of triangles. In the course of the exploration, students discover that the sum of the measure of the interior angles of a triangle is 180°. They also learn that the sum of the measures of the interior angles of a quadrilateral is 360°. They explore other polygons to find their angle sum and determine if there is a relationship to angle sum of triangles. The exploration concludes with finding the measure of the interior angles of regular polygons and speculating about how this relates to a circle.

Lastly, students solve equations to find unknown angle measures. Using their previous experience, students find the remaining angle measures in a parallelogram when only one angle measure is given. Students also play a game similar to 20 Questions to identify types of triangles and quadrilaterals. Having completed the remaining lessons, students have a four-day Gallery to explore a variety of problems.

The unit ends with a unit assessment.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Constructions and Angles, Characteristics Of Parallelograms
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn more about the characteristics of parallelograms by folding paper and measuring the angles in a parallelogram. Students use a ruler and protractor to draw parallelograms with given properties. Then, students use a ruler and protractor to draw a rectangle.Key ConceptsOpposite angles of a parallelogram are congruent.Consecutive angles of a parallelogram are supplementary.Diagonals of a parallelogram bisect each other.Diagonals of a rectangle are congruent.Goals and Learning ObjectivesAccess prior knowledge of parallelograms.Understand that the sum of angle measures in any quadrilateral is 360°.Understand the relationship of the angles and diagonals in a parallelogram.Understand the relationship of the angles and diagonals in a rectangle.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Classifying Triangles
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn to classify triangles by the size of the angles and the measures of the sides.Key ConceptsTriangles are polygons with three sides.Scalene triangles have all sides with a different length and all angles with a different measure.Isosceles triangles have two sides with the same length and two angles with the same measure.Equilateral triangles have all sides with the same length and all angles with the same measure.Acute triangles have all angles with a measure less than 90°.Obtuse triangles have one angle with a measure greater than 90°.Right triangles have one angle with a measure of 90°.ELL: Keep in mind that consistency at the beginning is very important as students begin to learn and apply math vocabulary.Goals and Learning ObjectivesExplore conditions that result in triangles.Identify types of triangles based on the measure of the angles or the measures of the sides.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Diagonals Of A Rhombus
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn how the diagonals of a rhombus are related. They use interactive sketches to learn about the properties of the angles and diagonals of squares, rectangles, rhombuses, parallelograms, and other quadrilaterals.Key ConceptsThe sum of the measures of the angles of all quadrilaterals is 360°.The alternate angles (nonadjacent angles) of rhombuses and parallelograms have the same measure.The measure of the angles of rectangles and squares is 90°.The consecutive angles of parallelograms and rhombuses are supplementary. This applies to squares and rectangles as well.The diagonals of a parallelogram bisect each other.The diagonals of a rectangle are congruent and bisect each other.The diagonals of a rhombus bisect each other and are perpendicular.Goals and Learning ObjectivesMeasure the angles formed by the intersection of the diagonals of a rhombus.Explore the relationships of the angles of different squares, rectangles, rhombuses, parallelograms, and other quadrilaterals.Explore the relationships of the diagonals of different squares, rectangles, rhombuses, parallelograms, and other quadrilaterals.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Exploring Polygons
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents explore different polygons by drawing them, measuring angles, and manipulating interactive sketches to find the angle sum for any polygon. Students also explore the angle measures in regular polygons.Key ConceptsThe angle sum in a triangle is 180°. A quadrilateral can be composed of two triangles, so the angle sum of a quadrilateral is 360°.The number of triangles that compose a polygon is two less than the number of sides (angles). The sum of the interior angles in a polygon with n sides is 180° (n – 2).Goals and Learning ObjectivesFind angle sums in polygons.Generalize to find the angle sum for any polygon.Find interior angle measures for regular polygons. 

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Exploring The Properties Of A Triangle
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore properties of triangles. They fold paper to make a triangle and measure its angles. Students also draw triangles with given conditions.Key ConceptsThe sum of the measures of the angles in a triangle is always 180°.Given different side measures and/or angle measures, some scenarios will create triangles and others will not. Students explore various cases and draw conclusions about which conditions create triangles and why.Goals and Learning ObjectivesDraw triangles with given conditions.Find the sum of the measures of the angles of a triangle.Explore conditions that result in triangles.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Four Types Of Angles
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn about four types of angles: adjacent, vertical, supplementary, and complementary. They explore the relationships between these types of angles by folding paper, measuring angles with a protractor, and exploring interactive sketches.Key ConceptsAdjacent angles are two angles that share a common vertex and a common side, but do not overlap. Angles 1 and 2 are adjacent angles.Supplementary angles are two angles whose measures have a sum of 180°. Angles 3 and 4 are supplementary angles. Complementary angles are two angles whose measures have a sum of 90°. Angles 5 and 6 are complementary angles. Vertical angles are the opposite angles formed by the intersection of two lines. Vertical angles are congruent. Angles 1 and 2 are vertical angles. Angles 3 and 4 are also vertical angles.Goals and Learning ObjectivesMeasure angles with a protractor and estimate angle measures as greater than or less than 90°.Understand the definition of vertical, adjacent, supplementary, and complementary angles.Explore the relationships between these types of angles.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit’s concepts or to assist students who may have fallen behind on work.Problem DescriptionsParallelogram to CubeStudents have a chance to review angle measurements in a parallelogram. Building the cube helps students see the transition from two-dimensional shapes and their relationship to three-dimensional figures.QuadrilateralsStudents investigate the possible quadrilaterals that can be made from any four given side lengths, focusing on those that can’t make a quadrilateral. Students also look at possible parallelograms with two sides given and possible rhombuses with four sides given.DiagonalsStudents further investigate diagonals in quadrilaterals. If the diagonals are perpendicular, is the figure a rhombus?TrapezoidsHow many right angles can a trapezoid have? How many congruent angles or congruent sides can it have? Can its diagonals be perpendicular or congruent? Students investigate possible trapezoids.More AnglesStudents explore three intersecting lines and the combinations of angles.Diagonals and AnglesThe sides of a parallelogram are extended beyond the vertices, and students explore which angles are congruent and which are supplementary. Students also explore the effect diagonals have on interior angles.Exterior AnglesStudents  explore the sum of exterior angles for several polygons and speculate about the results.Angles and SidesStudents explore the relationship between angles and sides in a triangle and discover that the longest side is opposite the largest angle, and the shortest side is opposite the smallest angle (and congruent sides are opposite congruent angles).Ratios and AnglesStudents explore the ratios of the legs of a right triangle to the angles in the triangle. Students see that there is a unique ratio for each angle, and vice versa. This is an informal look at trigonometry.Find the AngleStudents solve equations to find angle measures in polygons.TessellationsStudents explore quadrilateral tessellations and why they tessellate. Students also explore tessellations of pentagons and other polygons.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Pre-Assessment
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve for missing angle measures by applying what they have learned about types of angles and the angle measures of polygons. Students do a pre-assessment at the end of the lesson.Key ConceptsThere are many defining characteristics for angles, triangles, quadrilaterals, and polygons. Students have discovered these properties throughout this unit and have investigated why they are true. These characteristics and properties will be looked at more formally in high school geometry.Goals and Learning ObjectivesSolve for missing angle measures in polygons.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Review Quiz
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and revise their work from the Self Check after receiving feedback. Students then take a quiz to review the goals of the unit.Key ConceptsStudents reflect on their work and apply what they've learned about the characteristics of geometric figures.Goals and Learning ObjectivesCritique and revise work on the Self Check.Apply skills learned in the unit.Understand the relationship of angles:Created by intersecting lines.Found in quadrilaterals, triangles, and polygons.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Shape Characteristics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students discuss what they know about shapes and their characteristics through a paper-folding activity that results in a parallelogram.Key ConceptsQuadrilaterals and triangles are classified by their different characteristics; the types of angles and sides define the shapes. While students are familiar with some of the characteristics of these shapes, they begin to explore other aspects of theses figures. Students review what they know about these shapes so far.Goals and Learning ObjectivesReview characteristics that describe quadrilaterals and triangles.Discuss what students know about these shapes.Explore other aspects of these shapes.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Putting Math to Work, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Allow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery ProblemsThe SS Edmund FitzgeraldStudents solve mathematical problems about the sinking of the ship Edmund Fitzgerald.SpiralsStudents learn about the mathematics of spirals. They see spirals in nature and connect spirals to the Fibonacci.Ship It!Students learn about shipping containers and use a unit of measure that is only used in the shipping industry the twenty-foot equivalent unit (TEU).Rideau Canal WaterwayStudents compare information about the Rideau Canal and compare it with the Welland Canal.A Rule of ThumbStudents learn about a “rule of thumb” that people use to estimate the speed of a train they are riding on. They investigate the mathematics of this rule.IntersectionStudents use information on a map to calculate where two streets will intersect.Tolstoy's ProblemStudents learn about Leo Tolstoy, a Russian writer who wrote two of the greatest novels of all time. They solve a problem that Tolstoy found very interesting.The Dog RunStudents imagine having 22 meters of wire fencing for a dog run. They investigate how the area of the dog run changes as the length varies.Bodies of WaterStudents investigate a claim on the Runner's World website about the amount of water in the body of a 160-pound man.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Putting Math to Work, Interpreting Graphs & Diagrams
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

How much water is in the Great Lakes? Students read and interpret a diagram that shows physical features of the Great Lakes and answer questions based on the diagram. They find the volume of each of the Great Lakes, as well as all five lakes combined, and make a bar graph to represent the volumes.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret graphs and diagrams.Solve problems involving volume.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Putting Math to Work, Solving Problems That Require Spatial Reasoning
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students are presented with a front view and a side view of a cube structure. They use spatial reasoning to picture what the entire structure looks like and to determine the least number of cubes they would need to build the structure.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills. Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesVisualize three-dimensional spaces.Solve problems that require spatial reasoning.Design and implement a problem-solving plan.Articulate strategies, thought processes, and approaches to solving a problem and defend why the solution is reasonable.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Zooming In On Figures
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Zooming In On Figures

Unit Overview

Type of Unit: Concept; Project

Length of Unit: 18 days and 5 days for project

Prior Knowledge

Students should be able to:

Find the area of triangles and special quadrilaterals.
Use nets composed of triangles and rectangles in order to find the surface area of solids.
Find the volume of right rectangular prisms.
Solve proportions.

Lesson Flow

After an initial exploratory lesson that gets students thinking in general about geometry and its application in real-world contexts, the unit is divided into two concept development sections: the first focuses on two-dimensional (2-D) figures and measures, and the second looks at three-dimensional (3-D) figures and measures.
The first set of conceptual lessons looks at 2-D figures and area and length calculations. Students explore finding the area of polygons by deconstructing them into known figures. This exploration will lead to looking at regular polygons and deriving a general formula. The general formula for polygons leads to the formula for the area of a circle. Students will also investigate the ratio of circumference to diameter ( pi ). All of this will be applied toward looking at scale and the way that length and area are affected. All the lessons noted above will feature examples of real-world contexts.
The second set of conceptual development lessons focuses on 3-D figures and surface area and volume calculations. Students will revisit nets to arrive at a general formula for finding the surface area of any right prism. Students will extend their knowledge of area of polygons to surface area calculations as well as a general formula for the volume of any right prism. Students will explore the 3-D surface that results from a plane slicing through a rectangular prism or pyramid. Students will also explore 3-D figures composed of cubes, finding the surface area and volume by looking at 3-D views.
The unit ends with a unit examination and project presentations.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Zooming In On Figures, Applying Scale to Project
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will resume their project and decide on dimensions for their buildings. They will use scale to calculate the dimensions and areas of their model buildings when full size. Students will also complete a Self Check in preparation for the Putting It Together lesson.Key ConceptsThe first part of the project is essentially a review of the unit so far. Students will find the area of a composite figure—either a polygon that can be broken down into known areas, or a regular polygon. Students will also draw the figure using scale and find actual lengths and areas.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.Find the area of a composite figure.SWD: Consider what supplementary materials may benefit and support students with disabilities as they work on this project:Vocabulary resource(s) that students can reference as they work:List of formulas, with visual supports if appropriateClass summaries or lesson artifacts that help students to recall and apply newly introduced skillsChecklists of expectations and steps required to promote self-monitoring and engagementModels and examplesStudents with disabilities may take longer to develop a solid understanding of newly introduced skills and concepts. They may continue to require direct instruction and guided practice with the skills and concepts relating to finding area and creating and interpreting scale drawings. Check in with students to assess their understanding of newly introduced concepts and plan review and reinforcement of skills as needed.ELL: As academic vocabulary is reviewed, be sure to repeat it and allow students to repeat after you as needed. Consider writing the words as they are being reviewed. Allow enough time for ELLs to check their dictionaries if they wish.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022