This task "Uses facts about supplementary, complementary, vertical, and adjacent angles in …
This task "Uses facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure (7.G.5)" except that it requires students to know, in addition, something about parallel lines, which students will not see until 8th grade.
This task asks students to solve addition and subtraction equations with different …
This task asks students to solve addition and subtraction equations with different structures so that they are able to see the connections between addition and subtraction more easily.
In this task students are asked to write an equation to solve …
In this task students are asked to write an equation to solve a real-world problem. There are two natural approaches to this task. In the first approach, students have to notice that even though there is one variable, namely the number of firefighters, it is used in two different places. In the other approach, students can find the total cost per firefighter and then write the equation.
This task is the first in a series of three tasks that …
This task is the first in a series of three tasks that use inequalities in the same context at increasing complexity in 6th grade, 7th grade and in HS algebra. Students write and solve inequalities, and represent the solutions graphically.
This task is the second in a series of three tasks that …
This task is the second in a series of three tasks that use inequalities in the same context at increasing complexity in 6th grade, 7th grade and in HS algebra. Students write and solve inequalities, and represent the solutions graphically.
This task is the last in a series of three tasks that …
This task is the last in a series of three tasks that use inequalities in the same context at increasing complexity in 6th grade, 7th grade and in HS algebra. Students write and solve inequalities, and represent the solutions graphically. The progression of the content standards is 6.EE.8 to 7.EE.4 to A-REI.12.
This task can be used to both assess student understanding of systems …
This task can be used to both assess student understanding of systems of linear equations or to promote discussion and student thinking that would allow for a stronger solidification of these concepts.
The purpose of this task is for students to translate between measurements …
The purpose of this task is for students to translate between measurements given in a scale drawing and the corresponding measurements of the object represented by the scale drawing.
This task provides a context for some of the questions asked in …
This task provides a context for some of the questions asked in "6.NS Multiples and Common Multiples." A scaffolded version of this task could be adapted into a teaching task that could help motivate the need for the concept of a common multiple.
The purpose of this task is to give students practice working the …
The purpose of this task is to give students practice working the formulas for the volume of cylinders, cones and spheres, in an engaging context that provides and opportunity to attach meaning to the answers.
The purpose of this task is to provide students with a concrete …
The purpose of this task is to provide students with a concrete experience they can relate to fraction multiplication. Perhaps more importantly, the task also purposefully relates length and locations of points on a number line, a common trouble spot for students. This task is meant for instruction and would be a useful as part of an introductory unit on fraction multiplication.
This task contrasts the usefulness of four equivalent expressions. Students first have …
This task contrasts the usefulness of four equivalent expressions. Students first have to confirm that the given expressions for the radioactive substance are equivalent. Then they have to explain the significance of each expression in the context of the situation.
There is a natural (and complicated!) predator-prey relationship between the fox and …
There is a natural (and complicated!) predator-prey relationship between the fox and rabbit populations, since foxes thrive in the presence of rabbits, and rabbits thrive in the absence of foxes. However, this relationship, as shown in the given table of values, cannot possibly be used to present either population as a function of the other. This task emphasizes the importance of the "every input has exactly one output" clause in the definition of a function, which is violated in the table of values of the two populations.
The example of rabbits and foxes was introduced in the task (8-F …
The example of rabbits and foxes was introduced in the task (8-F Foxes and Rabbits) to illustrate two functions of time given in a table. We are now in a position to actually model the data given previously with trigonometric functions and investigate the behavior of this predator-prey situation.
The example of rabbits and foxes was introduced in 8-F Foxes and …
The example of rabbits and foxes was introduced in 8-F Foxes and Rabbits to illustrate two functions of time given in a table. The same situation was used in F-TF Foxes and Rabbits 2 to find trigonometric functions modeling the data in the table. The previous situation was somewhat unrealistic since we were able to find functions that fit the data perfectly. In this task, on the other hand, we do some legitimate modelling, in that we come up with functions that approximate the data well, but do not perfectly match, the given data.
This series of 5 word problems lead up to the final problem. …
This series of 5 word problems lead up to the final problem. Most students should be able to answer the first two questions without too much difficulty. The decimal numbers may cause some students trouble, but if they make a drawing of the road that the girls are riding on, and their positions at the different times, it may help. The third question has a bit of a challenge in that students won't land on the exact meeting time by making a table with distance values every hour. The fourth question addresses a useful concept for problems involving objects moving at different speeds which may be new to sixth grade students.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.