Updating search results...

Search Resources

35 Results

View
Selected filters:
  • negative-numbers
Math, Grade 7, Working With Rational Numbers, Model Integers Multiplication
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use number lines to represent products of a negative integer and a positive integer, and they use patterns to understand products of two negative integers. Students write rules for products of integers.Key ConceptsThe product of a negative integer and a positive integer can be interpreted as repeated addition. For example, 4 • (–2) = (–2) + (–2) + (–2) + (–2). On a number line, this can be represented as four arrows of length 2 in a row, starting at 0 and pointing in the negative direction. The last arrow ends at –8, indicating that 4 • (–2) = –8. In general, the product of a negative integer and a positive integer is negative.The product of two negative integers is hard to interpret or visualize. In this lesson, we use patterns to help students see why a negative integer multiplied by a negative integer equals a positive integer. For example, students can compute the products in the pattern below.4 • (–3) = –123 • (–3) = –92 • (–3) = –61 • (–3) = –30 • (–3) = 0They can observe that, as the first factor decreases by 1, the product increases by 3. They can continue this pattern to find these products.–1 • (–3) = 3–2 • (–3) = 6–3 • (–3) = 9In the next lesson, we will prove that the rules for multiplying positive and negative integers extend to all rational numbers, including fractions and decimals.Goals and Learning ObjectivesRepresent multiplication of a negative integer and a positive integer on a number line.Use patterns to understand products of two negative integers.Write rules for multiplying integers.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Working With Rational Numbers, Multiplication & Division To Solve Problems
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve division problems by changing them into multiplication problems. They then use the relationship between multiplication and division to determine the sign when dividing positive and negative numbers in general.Key ConceptsThe rules for determining the sign of a quotient are the same as those for a product: If the two numbers have the same sign, the quotient is positive; if they have different signs, the quotient is negative. This can be seen by rewriting a division problem as a multiplication of the inverse.For example, consider the division problem −27 ÷ 9. Here are two ways to use multiplication to determine the sign of the quotient:The quotient is the value of x in the multiplication problem 9 ⋅ x = −27. Because 9 is positive, the value of x must be negative in order to get the negative product.The division −27 ÷ 9 is equivalent to the multiplication −27 ⋅ 19. Because this is the product of a negative number and a positive number, the result must be negative.Goals and Learning ObjectivesUse the relationship between multiplication and division to solve division problems involving positive and negative numbers.Understand how to determine whether a quotient will be positive or negative.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Working With Rational Numbers, Reviewing The Properties of Multiplication
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use properties of multiplication to prove that the product of any two negative numbers is positive and the product of a positive number and a negative number is negative.Key ConceptsMultiplication properties can be used to develop the rules for multiplying positive and negative numbers.Students are familiar with the properties from earlier grades:Associative property of multiplication: Changing the grouping of factors does not change the product. For any numbers a, b, and c, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).Commutative property of multiplication: Changing the order of factors does not change the product. For any numbers a and b, a ⋅ b = b ⋅ a.Multiplicative identity property of 1: The product of 1 and any number is that number. For any number a, a ⋅ 1 = 1 ⋅ a = a.Property of multiplication by 0: The product of 0 and any number is 0. For any number a, a ⋅ 0 = 0 ⋅ a = 0.Property of multiplication by −1: The product of −1 and a number is the opposite of that number. For any number a, (−1) ⋅ a = −a.Existence of multiplicative inverses: Dividing any number by the same number equals 1. Multiplying any number by its multiplicative inverse equals 1. For every number a ≠ 0, a ÷ a = a ⋅ 1a = 1a ⋅ a = 1.Distributive property: Multiplying a number by a sum is the same as multiplying the number by each term and then adding the products. For any numbers a, b, and c, a ⋅ (b + c) = a ⋅ b + a ⋅ c.In this lesson, students will encounter a proof showing that the product of a positive number and a negative number is negative and two different proofs that the product of two negative numbers is positive. Two alternate proofs are as follows.Proof that the product of two negative numbers is positive:Represent the negative numbers as −a and −b, where a and b are positive.(−a) ⋅ (−b)Original expression= ((−1) ⋅ a) ⋅ ((−1) ⋅ b)   Property of multiplication by −1= (−1) ⋅ (a ⋅ (−1)) ⋅ b   Associative property of multiplication= (−1) ⋅ ((−1) ⋅ a) ⋅ b   Commutative property of multiplication= ((−1) ⋅ (−1)) ⋅ (a ⋅ b)   Associative property of multiplication= 1 ⋅ (a ⋅ b)   Property of multiplication by −1= a ⋅ b   Multiplicative identity property of 1Because a and b are positive, a ⋅ b is positive.Proof that the product of a positive number and a negative number is negative:Let a be the positive number. Let −b be the negative number, where b is positive.a ⋅ (−b)Original expression= a ⋅ ((−1) ⋅ b)     Property of multiplication by −1= (a ⋅ (−1)) ⋅ b     Associative property of multiplication= ((−1) ⋅ a) ⋅ b     Commutative property of multiplication= (−1) ⋅ (a ⋅ b)     Associative property of multiplication= −(a ⋅ b)     Property of multiplication by −1Because a and b are positive, a ⋅ b is positive, so −(a ⋅ b) must be negative.Goals and Learning ObjectivesReview properties of multiplication.Explain why the product of two negative numbers is positive and the product of a negative number and a positive number is negative.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Working With Rational Numbers, Self Check Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and improve their work on the Self Check, then work on more addition and subtraction problems.Students solve problems that require them to apply their knowledge of adding and subtracting positive and negative numbers.Key ConceptsTo solve the problems in this lesson, students use their knowledge of addition and subtraction with positive and negative numbers.Goals and Learning ObjectivesUse knowledge of addition and subtraction with positive and negative numbers to write problems that meet given criteria.Assess and critique methods for subtracting negative numbers.Find values of variables that satisfy given inequalities.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Working With Rational Numbers, Self Check Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students critique and improve their work on the Self Check. They then extend their knowledge with additional problems.Students solve problems that require them to apply their knowledge of multiplying and dividing positive and negative numbers. Students will then take a quiz.Key ConceptsTo solve the problems in the Self Check, students must apply their knowledge of multiplication and division of positive and negative numbers learned throughout the unit.Goals and Learning ObjectivesUse knowledge of multiplication and division of positive and negative numbers to solve problems.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Working With Rational Numbers, The Effects of Positive & Negative Numbers
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore what happens to a hot air balloon when they add or remove units of weight or heat. This activity is an informal exploration of addition and subtraction with positive and negative integers.Key ConceptsThis lesson introduces a balloon simulation for adding and subtracting integers. Positive integers are represented by adding units of heat to air and negative integers are represented by adding units of weight. The balloon is pictured next to a vertical number line. The balloon rises one unit for each unit of heat added or each unit of weight removed. The balloon falls one unit for each unit of weight added or each unit of heat removed from the air.Mathematically, adding 1 to a number and subtracting −1 from a number are equivalent and increase the number by 1. Adding −1 to a number and subtracting 1 from a number are equivalent and decrease the number by 1. Addition and subtraction with positive and negative numbers are explored formally in the next several lessons.Goals and Learning ObjectivesExplore the effects of adding or subtracting positive and negative numbers.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math Snacks: Number Rights
Read the Fine Print
Educational Use
Rating
0.0 stars

Whole numbers are no better than any others! Practice plotting values on the number line as a passionate activist rises up and demands equity for all numbers, including fractions and decimals. A teaching guide with printable resources is included. [3:09]

Subject:
Mathematics
Material Type:
Audio/Video
Date Added:
08/01/2022
Negative Numbers, Variables, Number Line
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Given a, b, and c shown on the number line, Sal determines if statements like -b < c are true. [4:54]

Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.

Subject:
Mathematics
Material Type:
Audio/Video
Lesson
Provider:
Khan Academy
Date Added:
11/14/2023
Ordering Negative Numbers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Practice putting positive and negative numbers in order. For example, -28, 12, -51, and 43. Students receive immediate feedback and have the opportunity to try questions repeatedly, watch a video or receive hints.

Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.

Subject:
Mathematics
Material Type:
Audio/Video
Lesson
Provider:
Khan Academy
Date Added:
11/14/2023
Pearl Diver
Read the Fine Print
Educational Use
Rating
0.0 stars

Play a fast-paced video game that involves finding rational numbers on the number line. This game from Math Snacks focuses on using what you know about positive and negative numbers and fractions to place them correctly on the variable number line and retrieve pearls.

Subject:
Mathematics
Material Type:
Interactive
Provider:
PBS LearningMedia
Date Added:
11/06/2023
Solving Linear Inequalities with Negative Numbers
Read the Fine Print
Educational Use
Rating
0.0 stars

Solve an inequality that has negative numbers and a variable. This video focuses on using inverse operations to solve for a variable and the importance of flipping the inequality when multiplying or dividing by a negative number.

Subject:
Mathematics
Material Type:
Audio/Video
Lesson
Provider:
PBS LearningMedia
Date Added:
11/06/2023
WyzAnt: Simplifying Multiple Positive or Negative Signs
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to simplify multiple positive or negative signs. The resource consists of lessons with examples, a combining like terms calculator, an equation calculator, and a worksheet to check for comprehension.

Subject:
Mathematics
Material Type:
Lesson
Provider:
Wyzant
Date Added:
12/01/2023