Updating search results...

Search Resources

254 Results

View
Selected filters:
  • measurement
Math, Grade 7, Constructions and Angles
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Constructions and Angles

Unit Overview

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Use a protractor and ruler.
Identify different types of triangles and quadrilaterals and their characteristics.

Lesson Flow

After an initial exploratory lesson involving a paper folding activity that gets students thinking in general about angles and figures in a context, the unit is divided into two concept development sections. The first section focuses on types of angles—adjacent, supplementary, complementary, and vertical—and how they are manifested in quadrilaterals. The second section looks at triangles and their properties, including the angle sum, and how this affects other figures.

In the first set of conceptual lessons, students explore different types of angles and where the types of angles appear in quadrilaterals. Students fold paper and observe the angles formed, draw given angles, and explore interactive sketches that test many cases. Students use a protractor and ruler to draw parallelograms with given properties. They explore sketches of parallelograms with specific properties, such as perpendicular diagonals. After concluding the investigation of the angle types, students move on to the next set.

In the second set of conceptual development lessons, students focus on triangles. Students again fold paper to create figures and certain angles, such as complementary angles.

Students draw, using a protractor and ruler, other triangles with given properties. Students then explore triangles with certain known and unknown elements, such as the number of given sides and angles. This process starts with paper folding and drawing and continues with exploration of interactive sketches. Students draw conclusions about which cases allow 0, 1, 2, or an infinite number of triangles. In the course of the exploration, students discover that the sum of the measure of the interior angles of a triangle is 180°. They also learn that the sum of the measures of the interior angles of a quadrilateral is 360°. They explore other polygons to find their angle sum and determine if there is a relationship to angle sum of triangles. The exploration concludes with finding the measure of the interior angles of regular polygons and speculating about how this relates to a circle.

Lastly, students solve equations to find unknown angle measures. Using their previous experience, students find the remaining angle measures in a parallelogram when only one angle measure is given. Students also play a game similar to 20 Questions to identify types of triangles and quadrilaterals. Having completed the remaining lessons, students have a four-day Gallery to explore a variety of problems.

The unit ends with a unit assessment.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Constructions and Angles, Characteristics Of Parallelograms
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn more about the characteristics of parallelograms by folding paper and measuring the angles in a parallelogram. Students use a ruler and protractor to draw parallelograms with given properties. Then, students use a ruler and protractor to draw a rectangle.Key ConceptsOpposite angles of a parallelogram are congruent.Consecutive angles of a parallelogram are supplementary.Diagonals of a parallelogram bisect each other.Diagonals of a rectangle are congruent.Goals and Learning ObjectivesAccess prior knowledge of parallelograms.Understand that the sum of angle measures in any quadrilateral is 360°.Understand the relationship of the angles and diagonals in a parallelogram.Understand the relationship of the angles and diagonals in a rectangle.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Four Types Of Angles
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students learn about four types of angles: adjacent, vertical, supplementary, and complementary. They explore the relationships between these types of angles by folding paper, measuring angles with a protractor, and exploring interactive sketches.Key ConceptsAdjacent angles are two angles that share a common vertex and a common side, but do not overlap. Angles 1 and 2 are adjacent angles.Supplementary angles are two angles whose measures have a sum of 180°. Angles 3 and 4 are supplementary angles. Complementary angles are two angles whose measures have a sum of 90°. Angles 5 and 6 are complementary angles. Vertical angles are the opposite angles formed by the intersection of two lines. Vertical angles are congruent. Angles 1 and 2 are vertical angles. Angles 3 and 4 are also vertical angles.Goals and Learning ObjectivesMeasure angles with a protractor and estimate angle measures as greater than or less than 90°.Understand the definition of vertical, adjacent, supplementary, and complementary angles.Explore the relationships between these types of angles.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Constructions and Angles, Pre-Assessment
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students solve for missing angle measures by applying what they have learned about types of angles and the angle measures of polygons. Students do a pre-assessment at the end of the lesson.Key ConceptsThere are many defining characteristics for angles, triangles, quadrilaterals, and polygons. Students have discovered these properties throughout this unit and have investigated why they are true. These characteristics and properties will be looked at more formally in high school geometry.Goals and Learning ObjectivesSolve for missing angle measures in polygons.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Proportional Relationships
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Proportional Relationships

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Understand what a rate and ratio are.
Make a ratio table.
Make a graph using values from a ratio table.

Lesson Flow

Students start the unit by predicting what will happen in certain situations. They intuitively discover they can predict the situations that are proportional and might have a hard time predicting the ones that are not. In Lessons 2–4, students use the same three situations to explore proportional relationships. Two of the relationships are proportional and one is not. They look at these situations in tables, equations, and graphs. After Lesson 4, students realize a proportional relationship is represented on a graph as a straight line that passes through the origin. In Lesson 5, they look at straight lines that do not represent a proportional relationship. Lesson 6 focuses on the idea of how a proportion that they solved in sixth grade relates to a proportional relationship. They follow that by looking at rates expressed as fractions, finding the unit rate (the constant of proportionality), and then using the constant of proportionality to solve a problem. In Lesson 8, students fine-tune their definition of proportional relationship by looking at situations and determining if they represent proportional relationships and justifying their reasoning. They then apply what they have learned to a situation about flags and stars and extend that thinking to comparing two prices—examining the equations and the graphs. The Putting It Together lesson has them solve two problems and then critique other student work.

Gallery 1 provides students with additional proportional relationship problems.

The second part of the unit works with percents. First, percents are tied to proportional relationships, and then students examine percent situations as formulas, graphs, and tables. They then move to a new context—salary increase—and see the similarities with sales taxes. Next, students explore percent decrease, and then they analyze inaccurate statements involving percents, explaining why the statements are incorrect. Students end this sequence of lessons with a formative assessment that focuses on percent increase and percent decrease and ties it to decimals.

Students have ample opportunities to check, deepen, and apply their understanding of proportional relationships, including percents, with the selection of problems in Gallery 2.

Subject:
Mathematics
Ratios and Proportions
Provider:
Pearson
Math, Grade 7, Proportional Relationships, Exploring Numerical Relationships
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students are asked whether they can determine the number of books in a stack by measuring the height of the stack, or the number of marbles in a collection of marbles by weighing the collection.Students are asked to identify for which situations they can determine the number of books in a stack of books by measuring the height of the stack or the number of marbles in a collection of marbles by weighing the collection.Key ConceptsAs students examine different numerical relationships, they come to understand that they can find the number of books or the number of marbles in situations in which the books are all the same thickness and the marbles are all the same weight. This “constant” is equal to the value BA for a ratio A : B; students begin to develop an intuitive understanding of proportional relationships.Goals and Learning ObjectivesExplore numerical relationshipsSWD: Some students with disabilities will benefit from a preview of the goals in each lesson. Have students highlight the critical features or concepts to help them pay close attention to salient information.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/09/2022
Math, Grade 7, Putting Math to Work
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Putting Math to Work

Type of Unit: Problem Solving

Prior Knowledge

Students should be able to:

Solve problems involving all four operations with rational numbers.
Write ratios and rates.
Write and solve proportions.
Solve problems involving scale.
Write and solve equations to represent problem situations.
Create and interpret maps, graphs, and diagrams.
Use multiple representations (i.e., tables, graphs, and equations) to represent problem situations.
Calculate area and volume.
Solve problems involving linear measurement.

Lesson Flow

Students apply and integrate math concepts they have previously learned to solve mathematical and real-world problems using a variety of strategies. Students have opportunities to explore four real-world situations involving problem solving in a variety of contexts, complete a project of their choice, and work through a series of Gallery problems.

First, students utilize their spatial reasoning and visualization skills to find the least number of cubes needed to construct a structure when given the front and side views. Then, students select a project to complete as they work through this unit to refine their problem-solving skills. Students explore the relationship between flapping frequency, amplitude, and cruising speed to calculate the Strouhal number of a variety of flying and swimming animals. After that, students explore the volume of the Great Lakes, applying strategies for solving volume problems and analyzing diagrams. Next, students graphically represent a virtual journey through the locks of the Welland Canal, estimating the amount of drop through each lock and the distance traveled. Students have a day in class to work on their projects with their group.

Then, students have two days to explore Gallery problems of their choosing. Finally, students present their projects to the class.

Subject:
Mathematics
Provider:
Pearson
Math, Grade 7, Putting Math to Work, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Allow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery ProblemsThe SS Edmund FitzgeraldStudents solve mathematical problems about the sinking of the ship Edmund Fitzgerald.SpiralsStudents learn about the mathematics of spirals. They see spirals in nature and connect spirals to the Fibonacci.Ship It!Students learn about shipping containers and use a unit of measure that is only used in the shipping industry the twenty-foot equivalent unit (TEU).Rideau Canal WaterwayStudents compare information about the Rideau Canal and compare it with the Welland Canal.A Rule of ThumbStudents learn about a “rule of thumb” that people use to estimate the speed of a train they are riding on. They investigate the mathematics of this rule.IntersectionStudents use information on a map to calculate where two streets will intersect.Tolstoy's ProblemStudents learn about Leo Tolstoy, a Russian writer who wrote two of the greatest novels of all time. They solve a problem that Tolstoy found very interesting.The Dog RunStudents imagine having 22 meters of wire fencing for a dog run. They investigate how the area of the dog run changes as the length varies.Bodies of WaterStudents investigate a claim on the Runner's World website about the amount of water in the body of a 160-pound man.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Putting Math to Work, Interpreting Graphs & Diagrams
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

How much water is in the Great Lakes? Students read and interpret a diagram that shows physical features of the Great Lakes and answer questions based on the diagram. They find the volume of each of the Great Lakes, as well as all five lakes combined, and make a bar graph to represent the volumes.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret graphs and diagrams.Solve problems involving volume.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Putting Math to Work, Linear Measurements
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students first create a diagram that represents the distance a ship drops in each of a series of locks. Students create their diagrams based on a video of an actual ship traveling through the locks. Students need to use contextual clues in order to determine the relative drops in each of the locks.Key ConceptsStudents are expected to use the mathematical skills they have acquired in previous lessons or in previous math courses. The lessons in this unit focus on developing and refining problem-solving skills.Students will:Try a variety of strategies to approaching different types of problems.Devise a problem-solving plan and implement their plan systematically.Become aware that problems can be solved in more than one way.See the value of approaching problems in a systematic manner.Communicate their approaches with precision and articulate why their strategies and solutions are reasonable.Make connections between previous learning and real-world problems.Create efficacy and confidence in solving challenging problems in a real-world setting.Goals and Learning ObjectivesRead and interpret maps, graphs, and diagrams.Solve problems that involve linear measurement.Estimate length.Critique a diagram.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Samples and Probability
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Samples and ProbabilityType of Unit: ConceptualPrior KnowledgeStudents should be able to:Understand the concept of a ratio.Write ratios as percents.Describe data using measures of center.Display and interpret data in dot plots, histograms, and box plots.Lesson FlowStudents begin to think about probability by considering the relative likelihood of familiar events on the continuum between impossible and certain. Students begin to formalize this understanding of probability. They are introduced to the concept of probability as a measure of likelihood, and how to calculate probability of equally likely events using a ratio. The terms (impossible, certain, etc.) are given numerical values. Next, students compare expected results to actual results by calculating the probability of an event and conducting an experiment. Students explore the probability of outcomes that are not equally likely. They collect data to estimate the experimental probabilities. They use ratio and proportion to predict results for a large number of trials. Students learn about compound events. They use tree diagrams, tables, and systematic lists as tools to find the sample space. They determine the theoretical probability of first independent, and then dependent events. In Lesson 10 students identify a question to investigate for a unit project and submit a proposal. They then complete a Self Check. In Lesson 11, students review the results of the Self Check, solve a related problem, and take a Quiz.Students are introduced to the concept of sampling as a method of determining characteristics of a population. They consider how a sample can be random or biased, and think about methods for randomly sampling a population to ensure that it is representative. In Lesson 13, students collect and analyze data for their unit project. Students begin to apply their knowledge of statistics learned in sixth grade. They determine the typical class score from a sample of the population, and reason about the representativeness of the sample. Then, students begin to develop intuition about appropriate sample size by conducting an experiment. They compare different sample sizes, and decide whether increasing the sample size improves the results. In Lesson 16 and Lesson 17, students compare two data sets using any tools they wish. Students will be reminded of Mean Average Deviation (MAD), which will be a useful tool in this situation. Students complete another Self Check, review the results of their Self Check, and solve additional problems. The unit ends with three days for students to work on Gallery problems, possibly using one of the days to complete their project or get help on their project if needed, two days for students to present their unit projects to the class, and one day for the End of Unit Assessment.

Subject:
Mathematics
Statistics and Probability
Provider:
Pearson
Math, Grade 7, Samples and Probability, Comparing Sets of Data
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students estimate the length of 20 seconds by starting an unseen timer and stopping it when they think 20 seconds has elapsed. They are shown the results and repeat the process two more times. The first and third times are recorded and compiled, producing two data sets to be compared. Students analyze the data to conclude whether or not their ability to estimate 20 seconds improves with practice.Key ConceptsMeasures of center and spreadLine plots, box plots, and histogramsMean absolute deviation (MAD)Goals and Learning ObjectivesApply knowledge of statistics to compare sets of data.Use measures of center and spread to analyze data.Decide which graph is appropriate for a given situation.

Subject:
Statistics and Probability
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Samples and Probability, Probability As A Measure Of Likelihood
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will begin to think about probability by considering how likely it is that their house will be struck by lightning. They will consider the relative likelihood of familiar events (e.g., outdoor temperature, test scores) on the continuum between impossible and certain. Students will discuss where on the continuum "likely," "unlikely," and "equally likely as unlikely" are.Key ConceptsAs students begin their study of probability, they look at the likelihood of events. Students have an intuitive sense of likelihood, even if no numbers or ratios are attached to the events. For example, there is clearly a better chance that a specific student will be chosen at random from a class than from the entire school.Goals and Learning ObjectivesThink about the concept of likelihood.Understand that probability is a measure of likelihood.Informally estimate the likelihood of certain events.Begin to think about why one event is more likely than another.SWD: Students with disabilities may need additional support seeing the relationships among problems and strategies. Throughout this unit, keep anchor charts available and visible to assist them in making connections and working toward mastery. Provide explicit think alouds comparing strategies and making connections. In addition, ask probing questions to get students to articulate how a peer solved the problem or how one strategy or visual representation is connected or related to another.

Subject:
Mathematics
Statistics and Probability
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Maths Challenge: Spider Fly Distance
Read the Fine Print
Educational Use
Rating
0.0 stars

A "three star geometry problem" requiring knowledge of how to complete geometric proofs and some prior math skills to figure the shortest distance between the opposite corners of a cuboid.

Subject:
Mathematics
Material Type:
Lesson
Provider:
MathsChallenge.net
Date Added:
08/07/2023
Maths and Sports: Jumping
Read the Fine Print
Educational Use
Rating
0.0 stars

After training hard, Ben and Mia have improved their performance in the long jump and high jump. Can you work out the length and height of their original jumps? This activity explores multiplication, division and fractions in the context of sports training, and is designed to be accessible to primary school pupils at Key Stage 2.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
University of Cambridge (UK)
Provider Set:
Maths and Sports
Date Added:
08/07/2023
Maths and Sports: Now and Then
Read the Fine Print
Educational Use
Rating
0.0 stars

Look at the changes in results on some of the athletics track events at the Olympic Games in 1908 and 1948. What will the results be in 2012? This slightly more challenging activity encourages children to examine data and consider different kinds of influencing factors, and is designed to be accessible to primary pupils at Key Stage 2.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
University of Cambridge (UK)
Provider Set:
Maths and Sports
Date Added:
08/07/2023
Maths and Sports: Olympic Measures
Read the Fine Print
Educational Use
Rating
0.0 stars

Can you match these records and measurements to the correct event at the Olympic Games? This activity invites students to engage with units of measurement and orders of magnitude, and is aimed at secondary students at Key Stage 3.

Subject:
Mathematics
Material Type:
Lesson Plan
Provider:
University of Cambridge (UK)
Provider Set:
Maths and Sports
Date Added:
08/07/2023