Updating search results...

Search Resources

132 Results

View
Selected filters:
  • 6th-grade-mathematics
Math, Grade 6, Equations and Inequalities, Additional Properties of Equality
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents apply the addition property of equality to solve equations. They are introduced to this property using a balance scale.Key ConceptsUp until this lesson, students have been solving equations informally. They used guess and check and reasoned about the quantities on either side of the equation in order to solve the equation.In this lesson, students are introduced to the addition property of equality. As equations become more and more complicated, students will need to rely on formal methods for solving them. This property states that the same quantity can be added to both sides of an equation and the new equation will be equivalent to the original equation. That means the new equation will have the same solutions as the original equation.To solve an equation such as x + 6 = 15, –6 can be added to both sides to get the resulting equation x = 9. However, since adding a negative number has not been introduced yet, students will consider both adding and subtracting a number (which is the equivalent of adding a negative number) from both sides to be an application of the addition property of equality.Students will apply the addition property of equality to an equation with the goal of getting the variable alone on one side of the equation and a number on the other.Goals and Learning ObjectivesUse the addition property of equality to keep a scale balanced.Use the addition property of equality to solve equations of the form x + p = q for cases in which p, q, and x are all non-negative rational numbers.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Applying Multiplication Properties
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents apply the multiplication property of equality to solve equations.Key ConceptsIn the previous lesson, students solved equations of the form x + p = q using the addition property of equality. In this lesson, they will solve equations of the form px = q using the multiplication property of equality. They will multiply or divide both sides of an equation by the same number to obtain an equivalent equation.Since multiplication by a is equivalent to division by 1a, students will see that they may also divide both sides of the equation by the same number to get an equivalent equation. Students will also apply this property to solving a particular kind of equation, a proportion.Goals and Learning ObjectivesUse the multiplication property of equality to keep an equation balanced.Use the multiplication property of equality to solve equations of the form px = q for cases in which p, q, and x are all non-negative rational numbers.Use the multiplication property of equality to solve proportions.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Balance Scale As A Mathematical Model
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents solve a classic puzzle about finding a counterfeit coin. The puzzle introduces students to the idea of a scale being balanced when the weight of the objects on both sides is the same and the scale being unbalanced when the objects on one side do not weigh the same as the objects on the other side.Key ConceptsThe concept of an inequality statement can be modeled using an unbalanced scale. The context—weighing a set of coins in order to identify the one coin that weighs less than the others—allows students to manipulate the weight on either side of the scale. In doing so, they are focused on the relationship between two weights—two quantities—and whether or not they are equal.Goals and Learning ObjectivesExplore a balance scale as a model for an equation or an inequality.Introduce formal meanings of equality and inequality.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Gallery OverviewAllow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionsKeep It BalancedStudents will use reasoning to complete some equations to make them true.Equation SortStudents will sort equations into three groups: equations with one solution, equations with many solutions, and equations with no solutionsOn the Number LineStudents will use a number line to identify numbers that make an equation or inequality true.How Many Colors?Students will write and solve an equation to find the number of different colored blocks in a box.Value of sStudents will use a property of equality to solve an equation with large numbers.Marbles in a CupStudents are given information about the weight of a cup with two different amounts of marbles in it. They use this information to find the weight of the cup.When Is It True?Students will use what they know about 0 and 1 to decide when a certain equation is true.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Inequality Statements Including Variables
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents represent real-world situations using inequality statements that include a variable.Key ConceptsInequality statements tell you whether values in a situation are greater than or less than a given number and also tell you whether values in the situation can be equal to that number or not.The symbols < and > tell you that the unknown value(s) in a situation cannot be equal to a given number: the unknown value(s) are strictly greater than or less than the number. The inequality x < y means x must be less than y. The inequality x > y means x must be greater than y.The symbols ≤  and ≥ tell you that the unknown value(s) in a situation can also be equal to a given number: the unknown value(s) are less than or equal to, or greater than or equal to, the number. The inequality x ≤ y means x is less than or equal to y. The inequality x ≥ y means x is greater than or equal to y.Goals and Learning ObjectivesUnderstand the inequality symbols <, >, ≤, and ≥.Write inequality statements for real-world situations.ELL: When writing the summary, provide ELLs access to a dictionary and give them time to discuss their summary with a partner before writing, to help them organize their thoughts. Allow ELLs who share the same primary language to discuss in their native language if they wish.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Problem Solving Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents practice solving equations using either the addition or the multiplication property of equality.Key ConceptsStudents will solve equations of the form x + p = q using the addition property of equality.They will solve equations of the form px = q using the multiplication property of equality.They will need to look at the variable and decide what operation must be performed on both sides of the equation in order to isolate the variable on one side of the equation.If a number has been added to the variable, they will subtract that number from both sides of the equation. If a number has been subtracted from the variable, they will add that number to both sides of the equation. If the variable has been multiplied by a number, students will either divide both sides of the equation by that number or multiply by the reciprocal of that number. If the variable has been divided by a number, students will multiply by that number. Students will see how this can be applied to solving a proportion such as xc=ab.Goals and Learning ObjectivesPractice solving equations using either the addition or the multiplication property of equality.Distinguish between equations that can be solved using the addition property of equality from equations that can be solved using the multiplication property of equality.Solve a proportion by solving an equation.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Reasoning to Identify Solutions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents use reasoning to identify solutions to equations. They initially do this using the balance scale. They also learn that some equations may have all numbers as solutions and some equations may have no solutions.Key ConceptsBefore beginning the formal process of solving equations, students need opportunities to use reasoning to find solutions. Students study examples where reasoning pays off. For example, in the equation 4b + 15 = 3b + 6b, students can reason that 4b + 15 = 3b + 6b, so 5b must be equal to 15, an equation which they can solve by understanding multiplication.Students also discover that there are equations that can have every number as a solution or no number as a solution. They may recognize some equations with all numbers as solutions by recognizing that they show a property of operations, such as the commutative property of addition.SWD: Students with disabilities may struggle to determine salient information in lessons. Preview the goals with students to support saliency determination as they move through the instruction and tasks.Students with disabilities may struggle to self-monitor their progress through the lesson. Provide students with a copy of the lesson goals to use as a checklist as they move through the different tasks. Have students indicate when they have reached each goal for the lesson. This will also promote engagement, independence, and self-management of learning.Goals and Learning ObjectivesUse reasoning to identify the solution to an equation.Recognize equations that have any number as a solution and equations that have no solutions.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Representing An Inequality On A Number Line
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents represent inequalities on a number line, find at least one value that makes the inequality true, and write the inequality using words.SWD:When calling on students, be sure to call on ELLs and to encourage them to actively participate. Understand that their pace might be slower or they might be shy or more reluctant to volunteer due to their weaker command of the language.SWD:Thinking aloud is one strategy for making learning visible. When teachers think aloud, they are externalizing their internal thought processes. Doing so may provide students with insights into mathematical thinking and ways of tackling problems. It also helps to model accurate mathematical language.Key ConceptsInequalities, like equations, have solutions. An arrow on the number line—pointing to the right for greater values and to the left for lesser values—can be used to show that there are infinitely many solutions to an inequality.The solutions to x < a are represented on the number line by an arrow pointing to the left from an open circle at a.Example: x < 2The solutions to x > a are represented on the number line with an arrow pointing to the right from an open circle at a.Example: x > 2The solutions to x ≤ a are represented on the number line with an arrow pointing to the left from a closed circle at a.Example: x ≤ 2The solutions to x ≥ a are represented on the number line with an arrow pointing to the right from a closed circle at a.Example: x ≥ 2Goals and Learning ObjectivesRepresent an inequality on a number line and using words.Understand that inequalities have infinitely many solutions.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Self Check Review
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students work in pairs to critique and improve their work on the Self Check from the previous lesson.Key ConceptsTo critique and improve the task from the Self Check and to complete a similar task with a partner, students use what they know about solving equations and relating the equations to real-world situations.Goals and Learning ObjectivesSolve equations using the addition or multiplication property of equality.Write word problems that match algebraic equations.Write equations to represent a mathematical situation.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Solving Problems Involving Proportions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents solve problems using equations of the form x + p = q and px = q, as well as problems involving proportions.Key ConceptsStudents will extend what they know about writing expressions to writing equations. An equation is a statement that two expressions are equivalent. Students will write two equivalent expressions that represent the same quantity. One expression will be numerical and the other expression will contain a variable.It is important that when students write the equation, they define the variable precisely. For example, n represents the number of minutes Aiko ran, or x represents the number of boxes on the shelf.Students will then solve the equations and thereby solve the problems.Students will solve proportion problems by solving equations. This makes sense because a proportion such as xa=bc is really just an equation of the form xp = q where p=1a and q=bc.Students will also compare their algebraic solutions to an arithmetic solution for the problem. They will see, for example, that a problem that might be solved arithmetically by subtracting 5 from 78 can also be solved algebraically by solving x + 5 = 78, where 5 is subtracted from both sides—a parallel solution to subtracting 5 from 78.Goals and Learning ObjectivesUse equations of the form x + p = q and xp = q to solve problems.Solve proportion problems using equations.ELL: ELLs may have difficulty verbalizing their reasoning, particularly because word problems are highly language dependent. Accommodate ELLs by providing extra time for them to process the information. Note that this problem is a good opportunity for ELLs to develop their literacy skills since it incorporates reading, writing, listening, and speaking skills. Encourage students to challenge each others' ideas and justify their thinking using academic and specialized mathematical language.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Substituting A Given Value For A Variable
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewUsing a balance scale, students decide whether a certain value of a variable makes a given equation or inequality true. Then students extend what they learned using the balance scale to substituting a given value for a variable into an equation or inequality to decide if that value makes the equation or inequality true or false.Key ConceptsStudents will extend what they know about substituting a value for a variable into an expression to evaluate that expression.Equations and inequalities may contain variables. These equations or inequalities are neither true nor false. When a value is substituted for a variable, the equation or inequality then becomes true or false. If the equation or inequality is true for that value of the variable, that value is considered a solution to the equation or inequality.Goals and Learning ObjectivesUnderstand what solving an equation or inequality means.Use substitution to determine whether a given number makes an equation or inequality true.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Equations and Inequalities, Symbolic Representation
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents use weights to represent equal and unequal situations on a balance scale and represent them symbolically.Key ConceptsAn equation is a statement that shows that two expressions are equivalent. An equal sign (=) is used between the two expressions to indicate that they are equivalent. You can think of the two expressions as being “balanced.”An inequality is a statement that shows that two expressions are unequal. The symbols for “greater than” (>) and “less than” (<) are used to indicate which expression has the greater or lesser value. In an inequality, you can think of the two expressions as being “unbalanced.”Goals and Learning ObjectivesExplore a balance scale as a model for equations and inequalities.Understand that an equation states that two expressions are equivalent using an equal sign (=).Understand that an inequality states that one expression is greater than (>) or is less than (<) another expression.Use the equal sign (=) and the greater than (>) and less than (<) symbols with rational numbers.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Expressions

Type of Unit: Concept

Prior Knowledge

Students should be able to:

Write and evaluate simple expressions that record calculations with numbers.
Use parentheses, brackets, or braces in numerical expressions and evaluate expressions with these symbols.
Interpret numerical expressions without evaluating them.

Lesson Flow

Students learn to write and evaluate numerical expressions involving the four basic arithmetic operations and whole-number exponents. In specific contexts, they create and interpret numerical expressions and evaluate them. Then students move on to algebraic expressions, in which letters stand for numbers. In specific contexts, students simplify algebraic expressions and evaluate them for given values of the variables. Students learn about and use the vocabulary of algebraic expressions. Then they identify equivalent expressions and apply properties of operations, such as the distributive property, to generate equivalent expressions. Finally, students use geometric models to explore greatest common factors and least common multiples.

Subject:
Algebra
Mathematics
Provider:
Pearson
Math, Grade 6, Expressions, Common Multiples
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson OverviewStudents use a geometric model to investigate common multiples and the least common multiple of two numbers.Key ConceptsA geometric model can be used to investigate common multiples. When congruent rectangular cards with whole-number lengths are arranged to form a square, the length of the square is a common multiple of the side lengths of the cards. The least common multiple is the smallest square that can be formed with those cards.For example, using six 4 × 6 rectangles, a 12 × 12 square can be formed. So, 12 is a common multiple of both 4 and 6. Since the 12 × 12 square is the smallest square that can be formed, 12 is the least common multiple of 4 and 6.Common multiples are multiples that are shared by two or more numbers. The least common multiple (LCM) is the smallest multiple shared by two or more numbers.Goals and Learning ObjectivesUse a geometric model to understand least common multiples.Find the least common multiple of two whole numbers equal to or less than 12.

Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Distributive Properties of Geometric Models
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students use a rectangular area model to understand the distributive property. They watch a video to find how to express the area of a rectangle in two different ways. Then they find the area of rectangular garden plots in two ways.Key ConceptsThe distributive property can be used to rewrite an expression as an equivalent expression that is easier to work with. The distributive property states that multiplication distributes over addition.Applying multiplication to quantities that have been combined by addition: a(b + c)Applying multiplication to each quantity individually, and then adding the products together: ab + acThe distributive property can be represented with a geometric model. The area of this rectangle can be found in two ways: a(b + c) or ab + ac. The equality of these two expressions, a(b + c) = ab + ac, is the distributive property.Goals and Learning ObjectivesUse a geometric model to understand the distributive property.Write equivalent expressions using the distributive property.

Subject:
Algebra
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Evaluating Expressions
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students analyze how two different calculators get different values for the same numerical expression. In the process, students recognize the need for following the same conventions when evaluating expressions.Key ConceptsMathematical expressions express calculations with numbers (numerical expressions) or sometimes with letters representing numbers (algebraic expressions).When evaluating expressions that have more than one operation, there are conventions—called the order of operations—that must be followed:Complete all operations inside parentheses first.Evaluate exponents.Then complete all multiplication and division, working from left to right.Then complete all addition and subtraction, working from left to right.These conventions allow expressions with more than one operation to be evaluated in the same way by everyone. Because of these conventions, it is important to use parentheses when writing expressions to indicate which operation to do first. If there are nested parentheses, the operations in the innermost parentheses are evaluated first. Understanding the use of parentheses is especially important when interpreting the associative and the distributive properties.Goals and Learning ObjectivesEvaluate numerical expressions.Use parentheses when writing expressions.Use the order of operations conventions.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Expressions in Words & Symbols
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students do a card sort in which they match expressions in words with their equivalent algebraic expressions.Key ConceptsA mathematical expression that uses letters to represent numbers is an algebraic expression.A letter used in place of a number in an expression is called a variable.An algebraic expression combines both numbers and letters using the arithmetic operations of addition (+), subtraction (–), multiplication (·), and division (÷) to express a quantity.Words can be used to describe algebraic expressions.There are conventions for writing algebraic expressions:The product of a number and a variable lists the number first with no multiplication sign. For example, the product of 5 and n is written as 5n, not n5.The product of a number and a factor in parentheses lists the number first with no multiplication sign. For example, write 5(x + 3), not (x + 3)5.For the product of 1 and a variable, either write the multiplication sign or do not write the "1." For example, the product of 1 and z is written either 1 ⋅ z or z, not 1z.Goals and Learning ObjectivesTranslate between expressions in words and expressions in symbols.

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Gallery Problems Exercise
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lesson GuideAllow students who have a clear understanding of the content thus far in the unit to work on Gallery problems of their choosing. You can then use this time to provide additional help to students who need review of the unit's concepts or to assist students who may have fallen behind on work.Gallery DescriptionsBuilding BridgesStudents will examine a pattern and use expressions to show how to continue the pattern.Patterns in a TableStudents will complete a table by noticing relationships within the table and using those relationships to fill in empty cells in the table.Expressions for Perimeter and AreaStudents will write equivalent expressions for the perimeters and areas of various rectangles.Multiplication TableStudents will complete an unusual multiplication table by writing the algebraic expression that results from multiplying the terms given in the top row by the ones given in the left column.Garden BedsStudents will find the number of square tiles needed to pave around various configurations of rectangular garden beds. Then, students will write an algebraic equation to represent the number of square tiles needed to go around any number of plants in a single row.Telephone TreeStudents will solve problems about a telephone tree and use expressions to show the number of calls completed after a given number of rounds of calling.Stacks of DVDsStudents will write an expression to describe the width of a stack of DVDs, and then they will evaluate the expression for different numbers of DVD cases and boxed sets.Exponent Card SortStudents will complete a card sort that will give them practice working with exponents. Then they will use a set of blank cards to complete sets that purposely have one or two representations missing.Matching Words and ExpressionsStudents will match a verbal statement with its expression in this card sort.Investigating Factors and MultiplesStudents will investigate an interesting property of numbers involving the greatest common factor and the least common multiple.Fourth RockStudents will solve a problem about how long it will take for two imaginary planets in an imaginary solar system to align so that they are at their closest distance from each other.Factors of a NumberStudents will decide whether a mathematical claim about factors and multiples is true or false based on given criteria.Common FactorsStudents will look at two unknown numbers with a greatest common factor of 20 and determine what other factors must be common to the two unknown numbers. Students will use their answer to make a generalization.History of VariablesStudents will research the history of variables. When were they first used? Where were they first used? Who used them?Create a VideoStudents will use their creative powers to produce a video about expressions.

Subject:
Mathematics
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Math Tricks
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students explore what makes a math trick work by analyzing verbal math expressions that describe each step in the trick.Key ConceptsWords can be used to describe mathematical operations.In a math trick, a person starts with a number, follows mathematical directions given in words, and ends up with the original number.Math tricks can be explained by examining the mathematical expressions that represent the verbal directions.Goals and Learning ObjectivesExplore verbal expressions.Predict and test which sets of expressions will result in the original number.

Subject:
Mathematics
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022
Math, Grade 6, Expressions, Mathematical Vocabulary
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students play an Expressions Game in which they describe expressions to their partners using the vocabulary of expressions: term, coefficient, exponent, constant, and variable. Their partners try to write the correct expressions based on the descriptions.Key ConceptsMathematical expressions have parts, and these parts have names. These names allow us to communicate with others in a precise way.A variable is a symbol (usually a letter) in an expression that can be replaced by a number.A term is a number, a variable, or a product of numbers and variables. Terms are separated by the operator symbols + (plus) and – (minus).A coefficient is a symbol (usually a number) that multiplies the variable in an algebraic expression.An exponent tells how many copies of a number or variable are multiplied together.A constant is a number. In an expression, it can be a constant term or a constant coefficient. In the expression 2x + 3, 2 is a constant coefficient and 3 is a constant term.Goals and Learning ObjectivesIdentify parts of an expression using appropriate mathematical vocabulary.Write expressions that fit specific descriptions (for example, the expression is the sum of two terms each with a different variable).

Subject:
Algebra
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
02/28/2022