Module 1 of the Kindergarten curriculum in A Story of Units. In …
Module 1 of the Kindergarten curriculum in A Story of Units. In Topics A and B, classification activities allow students to analyze and observe their world and articulate their observations. Reasoning and dialogue begin immediately. In Topics C, D, E, and F, students order, count, and write up to ten objects to answer how many? questions from linear, to array, to circular, and finally to scattered configurations wherein they must devise a path through the objects as they count. In Topics G and H, students use their understanding of relationships between numbers and know that each successive number name refers to a quantity that is one greater and that the number before is one less.
Gain a basic understanding of mixed numbers and how they relate to …
Gain a basic understanding of mixed numbers and how they relate to improper fractions by watching this easy to understand video tutorial. Additional resources are available as part of a paid subscription service. [12:46]
Rational Numbers Type of Unit: Concept Prior Knowledge Students should be able …
Rational Numbers
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Solve problems with positive rational numbers. Plot positive rational numbers on a number line. Understand the equal sign. Use the greater than and less than symbols with positive numbers (not variables) and understand their relative positions on a number line. Recognize the first quadrant of the coordinate plane.
Lesson Flow
The first part of this unit builds on the prerequisite skills needed to develop the concept of negative numbers, the opposites of numbers, and absolute value. The unit starts with a real-world application that uses negative numbers so that students understand the need for them. The unit then introduces the idea of the opposite of a number and its absolute value and compares the difference in the definitions. The number line and positions of numbers on the number line is at the heart of the unit, including comparing positions with less than or greater than symbols.
The second part of the unit deals with the coordinate plane and extends student knowledge to all four quadrants. Students graph geometric figures on the coordinate plane and do initial calculations of distances that are a straight line. Students conclude the unit by investigating the reflections of figures across the x- and y-axes on the coordinate plane.
Students analyze whether given statements are possible or impossible using their definitions …
Students analyze whether given statements are possible or impossible using their definitions of absolute value and the opposite of a number. If the statements are possible, students give an example of a pair of numbers that fit the statement. If the statements are impossible, students explain why.Key ConceptsA number and the opposite of the number always have the same absolute value.In general, taking the opposite of n changes the sign of n. For example, the opposite of 3 is −3.In general, taking the absolute value of n gives a number |n|, which is always positive. For example, |3| = 3 and |−3| = 3.Since the opposite of 0 is 0 (which is neither positive nor negative), therefore −0 = 0. The number 0 is the only number which is its own opposite.Goals and Learning ObjectivesFind pairs of numbers that satisfy different statements about absolute values and/or the opposites of numbers.State when it is impossible to find a pair of numbers that satisfies the statement and explain why.
Ratios Type of Unit: Concept Prior Knowledge Students should be able to: …
Ratios
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Calculate with whole numbers up to 100 using all four operations. Understand fraction notation and percents and translate among fractions, decimal numbers, and percents. Interpret and use a number line. Use tables to solve problems. Use tape diagrams to solve problems. Sketch and interpret graphs. Write and interpret equations.
Lesson Flow
The first part of the unit begins with an exploration activity that focuses on a ratio as a way to compare the amount of egg and the amount of flour in a mixture. The context motivates a specific understanding of the use of, and need for, ratios as a way of making comparisons between quantities. Following this lesson, the usefulness of ratios in comparing quantities is developed in more detail, including a contrast to using subtraction to find differences. Students learn to interpret and express ratios as fractions, as decimal numbers, in a:b form, in words, and as data; they also learn to identify equivalent ratios.
The focus of the middle part of the unit is on the tools used to represent ratio relationships and on simplifying and comparing ratios. Students learn to use tape diagrams first, then double number lines, and finally ratio tables and graphs. As these tools are introduced, students use them in problem-solving contexts to solve ratio problems, including an investigation of glide ratios. Students are asked to make connections and distinctions among these forms of representation throughout these lessons. Students also choose a ratio project in this part of the unit (Lesson 8).
The third and last part of the unit covers understanding percents, including those greater than 100%.
Students have ample opportunities to check, deepen, and apply their understanding of ratios, including percents, with the selection of problems in the Gallery.
This lesson formally introduces and defines a ratio as a way of …
This lesson formally introduces and defines a ratio as a way of comparing numbers to one another.Key ConceptsA ratio is defined by the following characteristics:A ratio is a pair of numbers (a:b).Ratios are used to compare two numbers.The value of a ratio a:b is the quotient a ÷ b, or the result of dividing a by b.Other important features of ratios include the following:A ratio does not always tell you the values of quantities being compared.The order of values in a ratio matters.Goals and Learning ObjectivesIntroduce a formal definition of ratio.Use the definition of ratio to solve problems related to comparing quantities.Understand that ratios do not always tell you the values of the quantities being compared.Understand that the order of values in a ratio matters.
This website explains and defines adding whole numbers and decimals. Content explores …
This website explains and defines adding whole numbers and decimals. Content explores addition with regrouping and how to align numbers in a written calculation. There are even practice problems at the end of the lesson.
This site contains an explanation of complex conjugates. Then it goes on …
This site contains an explanation of complex conjugates. Then it goes on to list and display charts and formulas. Links are also provided for additional information.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
El módulo 1 establece la base para que los estudiantes dominen las sumas y diferencias a 20 y posteriormente apliquen estas habilidades para agregar con fluidez un dígito a los números de dos dígitos al menos a través de 100 utilizando entendimientos de valor de lugar, propiedades de las operaciones y la relación entre la adición y sustracción.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Module 1 sets the foundation for students to master the sums and differences to 20 and to subsequently apply these skills to fluently add one-digit to two-digit numbers at least through 100 using place value understandings, properties of operations and the relationship between addition and subtraction.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
Módulo 1 del plan de estudios de jardín de infantes en una historia de unidades. En los temas A y B, las actividades de clasificación permiten a los estudiantes analizar y observar su mundo y articular sus observaciones. El razonamiento y el diálogo comienzan de inmediato. En los temas C, D, E y F, los estudiantes ordenan, cuentan y escriben hasta diez objetos para responder cuántas preguntas de lineal, a matriz, circular y finalmente a configuraciones dispersas en las que deben idear una ruta a través de los objetos como cuentan. En los temas G y H, los estudiantes usan su comprensión de las relaciones entre los números y saben que cada nombre de número sucesivo se refiere a una cantidad que es una mayor y que el número anterior es uno menos.
English Description: Module 1 of the Kindergarten curriculum in A Story of Units. In Topics A and B, classification activities allow students to analyze and observe their world and articulate their observations. Reasoning and dialogue begin immediately. In Topics C, D, E, and F, students order, count, and write up to ten objects to answer how many? questions from linear, to array, to circular, and finally to scattered configurations wherein they must devise a path through the objects as they count. In Topics G and H, students use their understanding of relationships between numbers and know that each successive number name refers to a quantity that is one greater and that the number before is one less.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
Hasta este punto en el Grado K, los estudiantes han trabajado intensamente dentro de 10 y a menudo han contado a 30 utilizando el Rekenrek durante la práctica de fluidez. Este trabajo prepara el escenario para este módulo donde los estudiantes aclaran el significado de los 10 y algunos dentro de un número adolescente y extienden esa comprensión para contar hasta 100.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: Up to this point in Grade K, students have worked intensively within 10 and have often counted to 30 using the Rekenrek during fluency practice. This work sets the stage for this module where students clarify the meaning of the 10 ones and some ones within a teen number and extend that understanding to count to 100.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This number after bingo activity increases student flexibility with the number sequence …
This number after bingo activity increases student flexibility with the number sequence and their ability to start counting sequences at various points.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.