These images from the Smithsonian Institution depict Nancy Knowlton's work with snapping …
These images from the Smithsonian Institution depict Nancy Knowlton's work with snapping shrimp in Panama. Knowlton found that the closing of the isthmus -- dividing the Pacific Ocean from the Caribbean -- resulted in new species of shrimp.
This interactive will present the mathematical consideration of exponentially enriching a piece …
This interactive will present the mathematical consideration of exponentially enriching a piece of DNA using PCR. Typically, a PCR protocol will repeat approximately 30 cycles of denaturation, annealing, and elongation. 30 cycles of PCR produce around 1 billion copies of the amplified region.
Students construct paper recombinant plasmids to simulate the methods genetic engineers use …
Students construct paper recombinant plasmids to simulate the methods genetic engineers use to create modified bacteria. They learn what role enzymes, DNA and genes play in the modification of organisms. For the particular model they work on, they isolate a mammal insulin gene and combine it with a bacteria's gene sequence (plasmid DNA) for production of the protein insulin.
Students toss coins to determine what traits a set of mouse parents …
Students toss coins to determine what traits a set of mouse parents possess, such as fur color, body size, heat tolerance, and running speed. Then they use coin tossing to determine the traits a mouse pup born to these parents possesses. Then they compare these physical features to features that would be most adaptive in several different environmental conditions. Finally, students consider what would happen to the mouse offspring if those environmental conditions were to change: which mice would be most likely to survive and produce the next generation?
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
List the steps in eukaryotic transcription Discuss the role of RNA polymerases in transcription Compare and contrast the three RNA polymerases Explain the significance of transcription factors
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
List the different steps in prokaryotic transcription Discuss the role of promoters in prokaryotic transcription Describe how and when transcription is terminated
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the different steps in RNA processing Understand the significance of exons, introns, and splicing for mRNAs Explain how tRNAs and rRNAs are processed
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Explain the “central dogma” of DNA-protein synthesis Describe the genetic code and how the nucleotide sequence prescribes the amino acid and the protein sequence
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis Use the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crosses Explain the effect of linkage and recombination on gamete genotypes Explain the phenotypic outcomes of epistatic effects between genes
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the structure of prokaryotic and eukaryotic genomes Distinguish between chromosomes, genes, and traits Describe the mechanisms of chromosome compaction
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.