After students conduct the two associated activities, Density Column Lab - Parts …
After students conduct the two associated activities, Density Column Lab - Parts 1 and 2, present this lesson to provide them with an understanding of why the density column's oil, water and syrup layers do not mix and how the concepts of density and miscibility relate to water chemistry and remediation. Topics covered include miscibility, immiscibility, hydrogen bonds, hydrophobic and hydrophilic. Through the density column lab activities, students see liquids and solids of different densities interact without an understanding of why the resulting layers do not mix. This lesson gives students insight on some of the most fundamental chemical properties of water and how it interacts with different molecules.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹlearn about the fundamentals of sound as student teams create percussive and stringed instruments for a local band.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹstudents employ the concepts of tension and compression to build a suspension bridge without the aid of power tools.
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring …
In this video segment adapted from Design Squadí_í_íŹa PBS TV series featuring high school contestants tackling engineering challengesí_í_íŹstudents employ the concepts of tension and compression as they build a truss bridge without the aid of power tools.
In this video segment adapted from ZOOM, cast members design and build …
In this video segment adapted from ZOOM, cast members design and build door alarms using a variety of materials, including aluminum foil, batteries, and buzzers.
How can an understanding of pH—a logarithmic scale used to identify the …
How can an understanding of pH—a logarithmic scale used to identify the acidity or basicity of a water-based solution—be used to design and create a color-changing paint? This activity provides students the opportunity to extract dyes from natural products and test dyes for acids or bases as teams develop a prototype “paint” that is eventually applied to help with a wall redesign at a local children’s hospital. Students learn about how dyes are extracted from organic material and use the engineering design process to test dyes using a variety of indicators to achieve the right color for their prototype. Students iterate on their dyes and use ratios and proportions to calculate the amount of dye needed to successfully complete their painting project.
This activity is an inquiry lab where students observe the effects of …
This activity is an inquiry lab where students observe the effects of temperature change on nitrogen dioxide gas, a common component of polluted air, to determine its color.
In this field lab activity, students will determine the density, pH and …
In this field lab activity, students will determine the density, pH and water content of prairie soil, transition soil, woods soil, and riverbed soil and compare their findings.
Movement of ions in and out of cells is crucial to maintaining …
Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.
In this activity, students investigate different methods (aeration and filtering) for removing …
In this activity, students investigate different methods (aeration and filtering) for removing pollutants from water. They will design and build their own water filters.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.