Updating search results...

Search Resources

76 Results

View
Selected filters:
  • Data Set
AASL The Future of School Libraries
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

School librarians can improve their practice by expanding their interactions to peers from different countries and cultures. This issue explores how school librarians can increase their global competence. Articles address cultural intelligence, international school library guidelines, school library research from around the world, and more.

Subject:
21st Century Skills
Critical Thinking
Information, Media and Technological Literacy
Problem-Solving and Communication
Material Type:
Data Set
Lecture Notes
Author:
Assistant Professor
Assistant Professor & Program Coordinator
Associate Professor and Director
California State University (CSU) Long Beach
Cultural Adventures Kelly Grogg
Dean of the Library
Doctoral Candidate
Guide & Consultant
Illustrator and Graphic Designer
Lecturer
Lesley S. J. Farmer
Librarian
Michele A. L. Villagran
Nelda Sullivan Middle School Francesca Sanna
Peace Corps Janet Lee
Professional Development Coordinator
Professor
Professor Emerita
Regis University Kate Lechtenberg
School Librarian
The Tarrant Institute for Innovative Education Sheila F. Baker
University of Alberta Connie Champlin
University of Alberta Karen Gavigan
University of Houston-Clear Lake Bonnie Alexander
University of Iowa Jeanie Phillips
University of North Texas Barbara Schultz-Jones
University of North Texas Dianne Oberg
University of South Carolina Jennifer L. Branch-Mueller
Date Added:
09/11/2019
Analysis of Simple Harmonic Oscillator in a Single Video Clip
Read the Fine Print
Educational Use
Rating
0.0 stars

One video clip, with embedded graphs, can be used to help students understand the mathematical relationships that describe simple harmonic motion.

Subject:
Physics
Science
Material Type:
Activity/Lab
Data Set
Lecture
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Peter Bohacek
Date Added:
02/24/2021
Bioinformatics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This exercise contains two interrelated modules that introduce students to modern biological techniques in the area of Bioinformatics, which is the application of computer technology to the management of biological information. The need for Bioinformatics has arisen from the recent explosion of publicly available genomic information, such as that resulting from the Human Genome Project.

Subject:
Biology
Science
Material Type:
Activity/Lab
Data Set
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Monica Bruckner
Date Added:
02/24/2021
Catalysts
Read the Fine Print
Rating
0.0 stars

There are two types of catalysis reactions: homogeneous and heterogeneous. In a homogeneous reaction, the catalyst is in the same phase as the reactants. In a heterogeneous reaction, the catalyst is in a different phase from the reactants. This activity addresses homogeneous catalysis.

Subject:
Chemistry
Science
Material Type:
Data Set
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Chemical Reactions and Stoichiometry
Read the Fine Print
Rating
0.0 stars

In this activity, students explore reactions in which chemical bonds are formed and broken. Students experiment with changing the temperature and the concentration of the atoms in order to see how these affect reaction rates. They also learn how to communicate what happens during a chemical reaction by writing the ratios of reactants and products, known as stoichiometry.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Coke vs. Pepsi Taste Test: Experiments and Inference about Cause
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Coke vs. Pepsi Taste Test Challenge has students design and carry out an experiment to determine whether or not students are able to correctly identify two brands of cola in a blind taste test. In the first stage of the activity students design and conduct the experiment. In the second part of the activity students use Sampling SIM software (freely downloadable from http://www.tc.umn.edu/~delma001/stat_tools/) to simulate and gather information on what would be expected under chance conditions (i.e., if students obtained correct answers only by guessing). The students then compare the observed results to the chance results and make an inference about whether a given student can in fact correctly identify Coke and Pepsi in a blind taste test. Finally, the experiment is critiqued in terms of how well it met the standards for a good experiment. This activity allows students to gain a better understanding of the experimental process and causality through considering control, random assignment, and possible confounding variables. The activity also allows students to begin to understand the process of hypothesis testing by comparing their observed results of the taste test to the results obtained through Sampling SIM (which model would be obtained by chance). Students make an inference about whether particular students in their class can truly tell the difference between Coke and Pepsi by reasoning about how surprising the observed results are compared to the simulated distribution of correct identifications by guessing. The activity also provides an opportunity for discussing generalizability to a population.

Subject:
Mathematics
Material Type:
Activity/Lab
Data Set
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Joan Garfield
Date Added:
02/24/2021
Collecting Climate Data
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This professional development article identifies resources that show young learners (K-grade 5) how scientists study Earth's climate and make predictions. The online lessons either allow students to collect and analyze data or learn about tools and technologies that make data collection possible. The lessons are aligned with national content standards for science education. The article appears in the free, online magazine Beyond Weather and the Water Cycle, which examines the recognized essential principles of climate literacy and the climate sciences for elementary teachers and their students.

Subject:
Earth and Space Science
Science
Material Type:
Data Set
Lesson Plan
Teaching/Learning Strategy
Provider:
The Ohio State University
Provider Set:
Beyond Weather and the Water Cycle
Author:
Jessica Fries-Gaither
National Science Foundation
Date Added:
02/09/2021
Comparing Carbon Calculators
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Carbon calculators, no matter how well intended as tools to help measure energy footprints, tend to be black boxes and can produce wildly different results, depending on the calculations used to weigh various energy factors. By comparing different calculators, learners can analyze which ones are the most accurate and relevant, and which are the most transparent.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Data Set
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mark McCaffrey
Date Added:
02/24/2021
Competition
Read the Fine Print
Rating
0.0 stars

Explore a NetLogo model of populations of rabbits, grass, and weeds. First, adjust the model to start with a different rabbit population size. Then adjust model variables, such as how fast the plants or weeds grow, to get more grass than weeds. Change the amount of energy the grass or weeds provide to the rabbits and the food preference. Use line graphs to monitor the effects of changes you make to the model, and determine which settings affect the proportion of grass to weeds when rabbits eat both.

Subject:
Life Science
Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Concord Consortium: Electric Current
Read the Fine Print
Rating
0.0 stars

This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
03/10/2013
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Concord Consortium: States of Matter
Read the Fine Print
Rating
0.0 stars

In this interactive activity, students view six models to investigate what a gas, liquid, and solid look like at the atomic level. Choose to view a gas or liquid made of atoms only, a gas made of diatomic molecules, a liquid made of triatomic molecules, or two types of solids. In each simulation, users may highlight an atom and view its trajectory to see how the motion differs in each of the three primary phases. Don't miss the extension activity: a side-by-side comparison of the atomic structure of a hot liquid and a cold liquid. If you click "Withdraw the Barrier", the two liquids mix. Which state of matter has stronger attractions between atoms? This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Chemistry
Science
Material Type:
Data Set
Diagram/Illustration
Full Course
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/10/2011
Conflicting Selection Pressures
Read the Fine Print
Rating
0.0 stars

Explore how populations change over time in a NetLogo model of sheep and grass. Experiment with the initial number of sheep, the sheep birthrate, the amount of energy sheep gain from the grass, and the rate at which the grass re-grows. Remove sheep that have a particular trait (better teeth) from the population, then watch what happens to the sheep teeth trait in the population as a whole. Consider conflicting selection pressures to make predictions about other instances of natural selection.

Subject:
Biology
Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Conservation of Energy of While Rolling Down a Hill
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze video clips of kids rolling down a hill on skates, scooters, and bikes to determine whether mechanical energy is conserved.

Subject:
Physics
Science
Material Type:
Activity/Lab
Data Set
Lecture
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Peter Bohacek
Date Added:
02/24/2021
Conservation of Energy of a Rollercoaster Using High Speed Video
Read the Fine Print
Educational Use
Rating
0.0 stars

A high speed video clip of a roller coaster is used as an example of conservation of mechanical energy. Students use the video to determine whether mechanical energy is conserved while the roller coaster rolls up, and then back down a hil.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Data Set
Lecture
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Peter Bohacek
Date Added:
02/24/2021
DNA to Protein
Read the Fine Print
Rating
0.0 stars

Explore the relationship between the genetic code on the DNA strand and the resulting protein and rudimentary shape it forms. Through models of transcription and translation, you will discover this relationship and the resilience to mutations built into our genetic code. Start by exploring DNA's double helix with an interactive 3D model. Highlight base pairs, look at one or both strands, and turn hydrogen bonds on or off. Next, watch an animation of transcription, which creates RNA from DNA, and translation, which 'reads' the RNA codons to create a protein.

Subject:
Biology
Science
Material Type:
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Diffusion
Read the Fine Print
Rating
0.0 stars

Diffusion is the net movement of particles from areas of high concentration (number of particles per unit area) to low concentration. In this activity, students use a molecular dynamics model to view the behavior of diffusion in gases and liquids.

Subject:
Physics
Science
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Diffusion, Osmosis and Active Transport
Read the Fine Print
Rating
0.0 stars

Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.

Subject:
Chemistry
Science
Material Type:
Data Set
Lecture Notes
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Electrical Analysis of Wind Power
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

For this experiment, students use a DC motor as a generator and various shaped turbine designs to test which design produces the most electrical power. Using a fan to generate the "wind", students attach different blades made of folded paper or card stock to the motor to see how much power is generated.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Data Set
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Lina Jiang and Philip Peterson
Date Added:
02/24/2021
Electrons in Atoms and Molecules
Read the Fine Print
Rating
0.0 stars

The interactions of electrons with matter have great explanatory power and are central to many technologies from transistors, diodes, smoke detectors, and dosemeters to sophisticated imaging, lasers, and quantum computing. A conceptual grasp of the interactions of electrons in general allows students to acquire deeper understanding that can be applied to a very broad range of technologies.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011