Updating search results...

Search Resources

36 Results

View
Selected filters:
  • cellular-respiration
Cellular Respiration and Bioremediation
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn about the basics of cellular respiration. They also learn about the application of cellular respiration to engineering and bioremediation. And, students are introduced to the process of bioremediation and several examples of how bioremediation is used during the cleanup of environmental contaminants.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
09/18/2014
Cellular Respiration and Population Growth
Read the Fine Print
Educational Use
Rating
0.0 stars

Two lessons and their associated activities explore cellular respiration and population growth in yeasts. Yeast cells are readily obtained and behave predictably, so they are very appropriate to use in middle school classrooms. In the first lesson, students are introduced to yeast respiration through its role in the production of bread and alcoholic beverages. A discussion of the effects of alcohol on the human body is used both as an attention-getting device, and as a means to convey important information at an impressionable age. In the associated activity, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arise from this activity, in the second lesson students work in small groups as they design and execute their own experiments to determine how environmental factors affect yeast population growth.

Subject:
Engineering
Environmental Science
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
01/31/2007
Counting Atoms: How Not to Break the Law of Conservation of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the science of microbial fuel cells (MFCs) by using a molecular modeling set to model the processes of photosynthesis and cellular respiration—building on the concept of MFCs that they learned in the associated lesson, “Photosynthesis and Cellular Respiration at the Atomic Level.” Students demonstrate the law of conservation of matter by counting atoms in the molecular modeling set. They also re-engineer a new molecular model from which to further gain an understanding of these concepts.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Kamryn Jenkins
Tuyen Duddles
Weiyang Yang
Wen Li
Date Added:
08/27/2018
How to Make Yeast Cells Thrive
Read the Fine Print
Educational Use
Rating
0.0 stars

Students set up and run the experiments they designed in the Population Growth in Yeasts associated lesson, using simple yeast-molasses cultures in test tubes. Population growth is indicated by the amount of respiration occurring in the cultures, which in turn is indicated by the growth of carbon dioxide bubbles trapped within the culture tubes. Using this method, students test for a variety of environmental influences, such as temperature, food supply and pH.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
NOAA: Chemosynthesis and Hydrothermal Vent Life
Read the Fine Print
Educational Use
Rating
0.0 stars

Chemosynthesis is explained in this video. View some of the 300 species that inhabit ecosystems based on chemosynthesis occurring at hydrothermal vents. There is an additional interactive hydrothermal foodweb to check out as well.

Subject:
Science
Material Type:
Audio/Video
Provider:
Monterey Institute for Technology and Education
Date Added:
12/01/2023
Photosynthesis: Life's Primary Energy Source
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers the process of photosynthesis and the related plant cell functions of transpiration and cellular respiration. Students will learn how engineers can use the natural process of photosynthesis as an exemplary model of a complex yet efficient process for converting solar energy to chemical energy or distributing water throughout a system.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Janet Yowell
Karen King
Date Added:
09/18/2014
Photosynthesis and Cellular Respiration
Read the Fine Print
Educational Use
Rating
0.0 stars

This pathway provides an introduction to cellular metabolism, including a comparison of the processes of photosynthesis and cellular respiration. For a deeper look at this topic, we recommend the pathways Metabolism, Cellular Respiration and The Biological Process of Photosynthesis from the OpenStax textbook Biology for AP® Courses.

Subject:
Biology
Science
Material Type:
Unit of Study
Provider:
LabXchange
Provider Set:
LabXchange Pathways
Date Added:
10/25/2023
Photosynthesis and Cellular Respiration at the Atomic Level
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration

Subject:
Chemistry
Engineering
Life Science
Mathematics
Measurement and Data
Physical Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Kamryn Jenkins
Tuyen Duddles
Weiyang Yang
Wen Li
Date Added:
08/27/2018
Student Inquiry Into Cellular Respiration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A POGIL activity regarding cellular respiration with an additional activity regarding the function of NAD+ in redox reactions.

Subject:
Life Science
Science
Material Type:
Activity/Lab
Teaching/Learning Strategy
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Barbara Fritz
Date Added:
02/24/2021
Test Prep: MCAT: Oxidative Phosphorylation: The Major Energy Provider of the Cell
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explains oxidative phosphorylation, which is the fourth step of cellular respiration, and produces the most of the energy in cellular respiration.

Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.

Subject:
Science
Material Type:
Audio/Video
Lesson
Provider:
Khan Academy
Date Added:
11/11/2021
What Do Bread and Beer Have in Common?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with information that will allow them to recognize that yeasts are unicellular organisms that are useful to humans. In fact, their usefulness is derived from the contrast between the way yeast cells and human cells respire. Specifically, while animal cells derive energy from the combination of oxygen and glucose and produce water and carbon dioxide as by-products, yeasts respire without oxygen. Instead, yeasts break glucose down and produce alcohol and carbon dioxide as their by-products. The lesson is also intended to provoke questions from students about the effects of alcohol on the human body, to which the teacher can provide objective answers.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Yeast Cells Respire, Too (But Not Like Me and You)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Each student adds a small amount of baking yeast to a test tube filled with diluted molasses. A second, smaller test tube is then placed upside-down inside the solution. As the yeast cells respire, the carbon dioxide they produce is trapped inside the inverted test tube, producing a growing bubble of gas that is easily observed and measured. Students are presented with the procedure for designing an effective experiment; they learn to think critically about experimental results and indirect observations of experimental events.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008