A Hawaiian kapa artist explains how she uses area and measurements as …
A Hawaiian kapa artist explains how she uses area and measurements as part of her art-making process in this video from the Center for Asian American Media. In the accompanying classroom activity, students watch the video and learn how the artist finds the area of cloth that she can create with one cup of tree bark fiber. Next, students find how many cups of tree bark fiber they would need for kapa cloth to cover various surfaces around the classroom. To get the most from this lesson, students should have experience using a constant of proportionality to find proportional relationships.
What kind of unit conversion would you like to do? This site …
What kind of unit conversion would you like to do? This site will allow you to do a multitude of conversions. Just click on the specific measurement you are needing to convert. It also provides a history of measurements and a chart of metric symbols.
In this lesson, the students will discover the relationship between an object's …
In this lesson, the students will discover the relationship between an object's mass and the amount of space it takes up (its volume). The students will also learn about the concepts of displacement and density.
Students follow the steps of the engineering design process as they design …
Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.
The purpose of this task is to provide students with a multi-step …
The purpose of this task is to provide students with a multi-step problem involving volume and to give them a chance to discuss the difference between exact calculations and their meaning in a context.
Students apply their knowledge of surface area and volume to solve some …
Students apply their knowledge of surface area and volume to solve some problems for a box company. This lesson contains a detailed lesson plan, video explanations, rubrics, group work guidelines, slides containing problems, and supplemental problems if needed.
After learning, comparing and contrasting the steps of the engineering design process …
After learning, comparing and contrasting the steps of the engineering design process (EDP) and scientific method, students review the human skeletal system, including the major bones, bone types, bone functions and bone tissues, as well as other details about bone composition. Students then pair-read an article about bones and bone growth and compile their notes to summarize the article. Finally, students complete a homework assignment to review the major bones in the human body, preparing them for the associated activities in which they create and test prototype replacement bones with appropriate densities. Two PowerPoint(TM) presentations, pre-/post-test, handout and worksheet are provided.
Students find the volume and surface area of a rectangular box (e.g., …
Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.
To display the results from the previous activity, each student designs and …
To display the results from the previous activity, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. They problem solve and apply their understanding of see-saws and lever systems to create balanced mobiles.
Paul Andersen explains how the energy of a wave if directly related …
Paul Andersen explains how the energy of a wave if directly related to the amplitude of a wave. The wave energy of a sound wave is the volume of the wave. [3:39]
Student pairs are given 10 minutes to create the biggest box possible …
Student pairs are given 10 minutes to create the biggest box possible using one piece of construction paper. Teams use only scissors and tape to each construct a box and determine how much puffed rice it can hold. Then, to meet the challenge, they improve their designs to create bigger boxes. They plot the class data, comparing measured to calculated volumes for each box, seeing the mathematical relationship. They discuss how the concepts of volume and design iteration are important for engineers. Making 3-D shapes also supports the development of spatial visualization skills. This activity and its associated lesson and activity all employ volume and geometry to cultivate seeing patterns and understanding scale models, practices used in engineering design to analyze the effectiveness of proposed design solutions.
This book is a "flexed" version of CK-12's Basic Geometry that aligns …
This book is a "flexed" version of CK-12's Basic Geometry that aligns with College Access Geometry and contains embedded literacy supports. It covers the essentials of geometry for the high school student.
CK-12 Foundation's Geometry FlexBook is a clear presentation of the essentials of …
CK-12 Foundation's Geometry FlexBook is a clear presentation of the essentials of geometry for the high school student. Topics include: Proof, Congruent Triangles, Quadrilaterals, Similarity, Perimeter & Area, Volume, and Transformations.
Investigate some of the mathematical challenges Boston engineers had to deal with …
Investigate some of the mathematical challenges Boston engineers had to deal with during the Central Artery Tunnel Project (the "Big Dig"). This video focuses on the irregular shape of the casting basin and the volume calculations required to make the casting basin work, taking math out of the classroom and into real world problem solving.
This short video and interactive assessment activity is designed to teach third …
This short video and interactive assessment activity is designed to teach third graders about calculating and comparing capacities with illustrations (metric units).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.