Download these worksheets to sharpen your geometry skills. Sheets focus on angles, …
Download these worksheets to sharpen your geometry skills. Sheets focus on angles, coordinate geometry, triangles, quadrilaterals, transformations, and three-dimensional geometry, and more.
Get independent practice working with finding the perimeter and area of triangles …
Get independent practice working with finding the perimeter and area of triangles and trapezoids. Each incorrect response gets a text box explanation and another try. Correct responses are confirmed.
This review lesson about basic shapes (polygons)contains varied hands-on exercises and tilings …
This review lesson about basic shapes (polygons)contains varied hands-on exercises and tilings about triangles, quadrilaterals, pentagons, and hexagons.
This tool allows you to create any geometric shape imaginable. Squares, triangles, …
This tool allows you to create any geometric shape imaginable. Squares, triangles, rhombi, trapezoids and hexagons can be created, colored, enlarged, shrunk, rotated, reflected, sliced, and glued together.
This task shows how to inscribe a circle in a triangle using …
This task shows how to inscribe a circle in a triangle using angle bisectors. A companion task, ``Inscribing a circle in a triangle II'' stresses the auxiliary remarkable fact that comes out of this task, namely that the three angle bisectors of triangle ABC all meet in the point O.
This problem introduces the circumcenter of a triangle and shows how it …
This problem introduces the circumcenter of a triangle and shows how it can be used to inscribe the triangle in a circle. It also shows that there cannot be more than one circumcenter.
This task focuses on a remarkable fact which comes out of the …
This task focuses on a remarkable fact which comes out of the construction of the inscribed circle in a triangle: the angle bisectors of the three angles of triangle ABC all meet in a point.
Shodor Education Foundation provides an applet that "allows the user to explore …
Shodor Education Foundation provides an applet that "allows the user to explore the world of transformations, reflections, and rotations. It allows the user to translate triangles, squares, and parallelograms on both the x and y-axes."
This task is intended for instruction, providing the students with a chance …
This task is intended for instruction, providing the students with a chance to experiment with physical models of triangles, gaining spatial intuition by executing reflections.
Gain a basic understanding of triangles by watching easy to understand video …
Gain a basic understanding of triangles by watching easy to understand video tutorial. Additional resources are available as part of a paid subscription service. [7:39]
In this lesson, students will watch videos about shapes and identify shapes …
In this lesson, students will watch videos about shapes and identify shapes in their environment and in art. Links to the videos are at the bottom of the lesson overview, other material links are also provided.
Surface Area and Volume Type of Unit: Conceptual Prior Knowledge Students should …
Surface Area and Volume
Type of Unit: Conceptual
Prior Knowledge
Students should be able to:
Identify rectangles, parallelograms, trapezoids, and triangles and their bases and heights. Identify cubes, rectangular prisms, and pyramids and their faces, edges, and vertices. Understand that area of a 2-D figure is a measure of the figure's surface and that it is measured in square units. Understand volume of a 3-D figure is a measure of the space the figure occupies and is measured in cubic units.
Lesson Flow
The unit begins with an exploratory lesson about the volumes of containers. Then in Lessons 2–5, students investigate areas of 2-D figures. To find the area of a parallelogram, students consider how it can be rearranged to form a rectangle. To find the area of a trapezoid, students think about how two copies of the trapezoid can be put together to form a parallelogram. To find the area of a triangle, students consider how two copies of the triangle can be put together to form a parallelogram. By sketching and analyzing several parallelograms, trapezoids, and triangles, students develop area formulas for these figures. Students then find areas of composite figures by decomposing them into familiar figures. In the last lesson on area, students estimate the area of an irregular figure by overlaying it with a grid. In Lesson 6, the focus shifts to 3-D figures. Students build rectangular prisms from unit cubes and develop a formula for finding the volume of any rectangular prism. In Lesson 7, students analyze and create nets for prisms. In Lesson 8, students compare a cube to a square pyramid with the same base and height as the cube. They consider the number of faces, edges, and vertices, as well as the surface area and volume. In Lesson 9, students use their knowledge of volume, area, and linear measurements to solve a packing problem.
Lesson OverviewStudents find the area of a triangle by putting together a …
Lesson OverviewStudents find the area of a triangle by putting together a triangle and a copy of the triangle to form a parallelogram with the same base and height as the triangle. Students also create several examples of triangles and look for relationships among the base, height, and area measures. These activities lead students to develop and understand a formula for the area of a triangle.Key ConceptsTo find the area of a triangle, you must know the length of a base and the corresponding height. The base of a triangle can be any of the three sides. The height is the perpendicular distance from the vertex opposite the base to the line containing the base. The height can be found inside or outside the triangle, or it can be the length of one of the sides.You can put together a triangle and a copy of the triangle to form a parallelogram with the same base and height as the triangle. The area of the original triangle is half of the area of the parallelogram. Because the area formula for a parallelogram is A = bh, the area formula for a triangle is A = 12bh.Goals and Learning ObjectivesDevelop and explore the formula for the area of a triangle.
Algebraic Reasoning Type of Unit: Concept Prior Knowledge Students should be able …
Algebraic Reasoning
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Add, subtract, multiply, and divide rational numbers. Evaluate expressions for a value of a variable. Use the distributive property to generate equivalent expressions including combining like terms. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Write and solve equations of the form x+p=q and px=q for cases in which p, q, and x are non-negative rational numbers. Understand and graph solutions to inequalities x<c or x>c. Use equations, tables, and graphs to represent the relationship between two variables. Relate fractions, decimals, and percents. Solve percent problems included those involving percent of increase or percent of decrease.
Lesson Flow
This unit covers all of the Common Core State Standards for Expressions and Equations in Grade 7. Students extend what they learned in Grade 6 about evaluating expressions and using properties to write equivalent expressions. They write, evaluate, and simplify expressions that now contain both positive and negative rational numbers. They write algebraic expressions for problem situations and discuss how different equivalent expressions can be used to represent different ways of solving the same problem. They make connections between various forms of rational numbers. Students apply what they learned in Grade 6 about solving equations such as x+2=6 or 3x=12 to solving equations such as 3x+6=12 and 3(x−2)=12. Students solve these equations using formal algebraic methods. The numbers in these equations can now be rational numbers. They use estimation and mental math to estimate solutions. They learn how solving linear inequalities differs from solving linear equations and then they solve and graph linear inequalities such as −3x+4<12. Students use inequalities to solve real-world problems, solving the problem first by arithmetic and then by writing and solving an inequality. They see that the solution of the algebraic inequality may differ from the solution to the problem.
Students write and solve inequalities in order to solve two problems. One …
Students write and solve inequalities in order to solve two problems. One of the problems is a real-world problem that involves selling a house and paying the real estate agent a commission. The second problem involves the relationship of the lengths of the sides of a triangle.Key ConceptsIn this lesson, students again use algebraic inequalities to solve word problems, including real-world situations. Students represent a quantity with a variable, write an inequality to solve the problem, use the properties of inequality to solve the inequality, express the solution in words, and make sure that the solution makes sense.Students explore the relationships of the lengths of the sides of a triangle. They apply the knowledge that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side to solve for the lengths of sides of a triangle using inequalities. They solve the inequality for the length of the third side.Goals and Learning ObjectivesUse an algebraic inequality to solve problems, including real-world problems.Use the properties of inequalities to solve an inequality.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.