Students act as if they are biological engineers following the steps of …
Students act as if they are biological engineers following the steps of the engineering design process to design and create protein models to replace the defective proteins in a child’s body. Jumping off from a basic understanding of DNA and its transcription and translation processes, students learn about the many different proteins types and what happens if protein mutations occur. Then they focus on structural, transport and defense proteins during three challenges posed by the R&D; bio-engineering hypothetical scenario. Using common classroom supplies such as paper, tape and craft sticks, student pairs design, sketch, build, test and improve their own protein models to meet specific functional requirements: to strengthen bones (collagen), to capture oxygen molecules (hemoglobin) and to capture bacteria (antibody). By designing and testing physical models to accomplish certain functional requirements, students come to understand the relationship between protein structure and function. They graph and analyze the class data, then share and compare results across all teams to determine which models were the most successful. Includes a quiz, three worksheets and a reference sheet.
Students learn how to manipulate the behavior of water by using biochar—a …
Students learn how to manipulate the behavior of water by using biochar—a soil amendment used to improve soil functions. As a fluid, water interacts with soil in a variety of ways. It may drain though a soil’s non-solid states, or its “pores”; lay above the soil; or move across cell membranes via osmosis. In this experiment, students solve the specific problem of standing water by researching, designing, and engineering solutions that enable water to drain faster. This activity is designed for students to explore how biochar helps soils to act as “sponges” in order to retain more water.
In this multi-day activity, students explore environments, ecosystems, energy flow and organism …
In this multi-day activity, students explore environments, ecosystems, energy flow and organism interactions by creating a scale model biodome, following the steps of the engineering design process. The Procedure section provides activity instructions for Biodomes unit, lessons 2-6, as students work through Parts 1-6 to develop their model biodome. Subjects include energy flow and food chains, basic needs of plants and animals, and the importance of decomposers. Students consider why a solid understanding of one's environment and the interdependence of an ecosystem can inform the choices we make and the way we engineer our own communities. This activity can be conducted as either a very structured or open-ended design.
Students examine the structure and function of the human eye, learning some …
Students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.
This interactive resource adapted from NASA describes the different temperature, precipitation, and …
This interactive resource adapted from NASA describes the different temperature, precipitation, and vegetation patterns in seven biomes: coniferous forest, temperate deciduous forest, desert, grassland, rainforest, shrubland, and tundra.
With a continued focus on the Sonoran Desert, students are introduced to …
With a continued focus on the Sonoran Desert, students are introduced to the concepts of biomes, limiting factors (resources), carrying capacity and growth curves through a PowerPoint® presentation. Abiotic factors (temperature, annual precipitation, seasons, etc.) determine the biome landscape. The vegetative component, as producers, determines the types of consumers that form its various communities. Students learn how the type and quantity of available resources defines how many organisms can be supported within the community, as well as its particular resident species. Students use mathematical models of natural relationships (in this case, sigmoid and exponential growth curves) to analyze population information and build upon it. With this understanding, students are able to explain how carrying capacity is determined by the limiting factors within the community and feeding relationships. By studying these ecological relationships, students see the connection between ecological relationships of organisms and the fundamentals of engineering design, adding to their base of knowledge towards solving the grand challenge posed in this unit.
Students are introduced to the concepts of biomimicry and sustainable design. Countless …
Students are introduced to the concepts of biomimicry and sustainable design. Countless examples illustrate the wisdom of nature in how organisms are adapted for survival, such as in body style, physiological processes, water conservation, thermal radiation and mutualistic relationships, to assure species perpetuation. Students learn from articles and videos, building a framework of evidence substantiating the indisputable fact that organisms operate "smarter" and thus provide humans with inspiration in how to improve products, systems and cities. As students focus on applying the ecological principles of the previous lessons to the future design of our human-centered world, they also learn that often our practices are incapable of replicating the precision in which nature completes certain functions, as evidenced by our dependence on bees as pollinators of the human food supply. The message of biomimicry is one of respect: study to improve human practices and ultimately protect natural systems. This heightened appreciation helps students to grasp the value of industry and urban mimetic designs to assure protection of global resources, minimize human impact and conserve nonrenewable resources. All of these issues aid students in creating a viable guest resort in the Sonoran Desert.
How can you tell if harmful bacteria are in your food or …
How can you tell if harmful bacteria are in your food or water that might make you sick? What you eat or drink can be contaminated with bacteria, viruses, parasites and toxins—pathogens that can be harmful or even fatal. Students learn which contaminants have the greatest health risks and how they enter the food supply. While food supply contaminants can be identified from cultures grown in labs, bioengineers are creating technologies to make the detection of contaminated food quicker, easier and more effective.
What are the factors that make up an ecosystem? Students will be …
What are the factors that make up an ecosystem? Students will be able to identify the biotic and abiotic factors of an ecosystem and explain how they impact each other.
Calling all parents! Kids are full of tough-to-answer questions. Maybe you've gotten …
Calling all parents! Kids are full of tough-to-answer questions. Maybe you've gotten this line of inquiry: "Why do we walk the way we do? How do four-legged animals walk the way they do? How did people of the past—like Lucy—walk?" Get one step ahead (pun intended!) by watching this Museum Monday video. See demonstrations of the different ways bodies are structured to accommodate locomotion, then share this fun activity with curious minds.
There are almost as many types of bird beaks as there are …
There are almost as many types of bird beaks as there are types of food that birds like to eat. This collection of images shows a wide range of beaks and the types of foods handled by each.
In episode two of Wildlife Wednesday, we meet up with Michelle Leighty, …
In episode two of Wildlife Wednesday, we meet up with Michelle Leighty, Manager of Wildlife Resources, who takes us behind the scenes of our raptor barn. Between administering medication to a Turkey Vulture and conducting a routine weight check with our Screech Owl, there’s no shortage of work when it comes to caring for the Museum’s birds.
The Cleveland Museum of Natural History’s ornithology collection of approximately 35,000 research …
The Cleveland Museum of Natural History’s ornithology collection of approximately 35,000 research specimens covers more than a century of ornithological exploration around the world, with an emphasis on species native to Ohio. Each specimen is meticulously prepared for use in scientific analysis. In this specimen spotlight, learn about all the information we can glean from just one specimen with host Lee Hall and William A. and Nancy R. Klamm Endowed Chair and Curator of Ornithology Dr. Andy Jones. Worksheets available for grades 7-8 and 9-12.
Join us on a special trip up to Bathurst Island to record …
Join us on a special trip up to Bathurst Island to record birdsongs, and learn about how you can use bird observations to create scientific inquiry in your classroom using ebird.org and birds.cornell.edu/birdsleuth.
Students study how heart valves work and investigate how valves that become …
Students study how heart valves work and investigate how valves that become faulty over time can be replaced with advancements in engineering and technology. Learning about the flow of blood through the heart, students are able to fully understand how and why the heart is such a powerful organ in our bodies.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.