In this video, Paul Andersen explains how light can be refracted, or …
In this video, Paul Andersen explains how light can be refracted, or bent, as it moves from one medium to another. The amount of refraction is determined by the angle of incidence and the index of refraction. Snell's Law can be used to calculate the angle of refraction. [11:20]
In the following video, Paul Andersen explains how waves will diffract (or …
In the following video, Paul Andersen explains how waves will diffract (or bend) around an obstacle or while traveling through an opening. Diffraction will be maximized when the size of the opening or obstacle matches the wavelength. [4:20]
Paul Andersen explains how waves interact with objects and other waves. When …
Paul Andersen explains how waves interact with objects and other waves. When a wave hits a fixed object, it will be reflected and inverted. When a wave hits a free object, it will be reflected without being inverted. [6:24]
In this demonstration of chemical change, the presenter blows breath into a …
In this demonstration of chemical change, the presenter blows breath into a methylene blue solution releasing carbon dioxide which acidifies the water and changes it from a bright blue color to green.
In this interactive activity from the Building Big Web site, use your …
In this interactive activity from the Building Big Web site, use your knowledge of bridge design to match the right bridge to the right location in a fictitious city.
Bridges come in a wide variety of sizes, shapes, and lengths and …
Bridges come in a wide variety of sizes, shapes, and lengths and are found all over the world. It is important that bridges are strong so they are safe to cross. Design and build a your own model bridge. Test your bridge for strength using a force sensor that measures how hard you pull on your bridge. By observing a graph of the force, determine the amount of force needed to make your bridge collapse.
Engage K-12 students with phenomena and science practices using this collection of …
Engage K-12 students with phenomena and science practices using this collection of supplementary digital media resources created by GBH in collaboration with NASA. The resources align with key NGSS Earth, space, and physical science disciplinary core ideas. To ensure that science content is accessible for all students, supports are included for students with disabilities or who are English learners; many resources have Spanish translations.
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal …
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.
Construct and measure the energy efficiency and solar heat gain of a …
Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.
In this video segment adapted from ZOOM, the cast shows how the …
In this video segment adapted from ZOOM, the cast shows how the 34 steps in their Rube Goldberg invention use everything from gravity to carbon dioxide gas in order to accomplish one simple task: pouring a glass of milk.
To better understand the role of mass and gravity in the formation …
To better understand the role of mass and gravity in the formation and existence of black holes we will model the collapse of a star into a black hole using aluminum foil. Along the way students will measure the decreasing circumference, and constant mass of their star as it collapses.
A bungee jump involves jumping from a tall structure while connected to …
A bungee jump involves jumping from a tall structure while connected to a large elastic cord. Design a bungee jump that is "safe" for a hard-boiled egg. Create a safety egg harness and connect it to a rubber band, which is your the "bungee cord." Finally, attach your bungee cord to a force sensor to measures the forces that push or pull your egg.
A zip line is a way to glide from one point to another while hanging from a cable. Design and create a zip line that is safe for a hard-boiled egg. After designing a safety egg harness, connect the harness to fishing line or wire connected between two chairs of different heights using a paper clip. Learn to improve your zip line based on data. Attach a motion sensor at the bottom of your zip line and display a graph to show how smooth a ride your egg had!
How do you build a tunnel 32 miles long -- under water? …
How do you build a tunnel 32 miles long -- under water? This video segment adapted from Building Big, follows the construction of the Channel Tunnel (nicknamed "Chunnel"), the engineering wonder that connects England to France.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.