This is an activity on apparent sizes and apparent angles, related to …
This is an activity on apparent sizes and apparent angles, related to understanding how distance affects what we observe in outer space (the sun, moon, stars, or planets).
This guided inquiry activity has students using models to create variations of …
This guided inquiry activity has students using models to create variations of alignment of the Earth, Moon, and Sun. By varying their arrangement, students will discover how the positions of the Earth, Moon and Sun interact, how shadows can be cast on the Moon and on the Earth, and how Earth's view of the lit portion of the Moon changes.
Students will create their own barometer in this activity and use it …
Students will create their own barometer in this activity and use it to discover atmospheric pressure and its relationship to the boiling points of liquids.
This set of assignments exposes students to data which can be used …
This set of assignments exposes students to data which can be used to analyze economic inequality in international and historical context. Then students are asked to generate a thesis-driven argument drawing supporting evidence from one or more of the data sources.
Students learn about energy, kinetic energy, potential energy, and energy transfer through …
Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.
Students are introduced to the concept of energy conversion, and how energy …
Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.
Students learn about kinetic and potential energy, including various types of potential …
Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.
Students are introduced to the definition of energy and the concepts of …
Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.
This is a teacher demonstration used to show an example of kinetic …
This is a teacher demonstration used to show an example of kinetic molecular energy using food coloring and water. The students are also given opportunity to develop their own questions and tests.
This is a two-part activity that implements an extension of the "think-pair-share" …
This is a two-part activity that implements an extension of the "think-pair-share" cooperative learning technique to study the determinants of supply and demand through hypothetical and real world examples.
This is a teacher demonstration used to show an example of kinetic …
This is a teacher demonstration used to show an example of kinetic molecular energy using food coloring and water. The students are also given opportunity to develop their own questions and tests.
Students learn the basics of the electromagnetic spectrum and how various types …
Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.