In this 40-day module, students develop a coordinate system for the first …
In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0, the planes coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Students use a hurricane tracking map to measure the distance from a …
Students use a hurricane tracking map to measure the distance from a specific latitude and longitude location of the eye of a hurricane to a city. Then they use the map's scale factor to convert the distance to miles. They also apply the distance formula by creating an x-y coordinate plane on the map. Students are challenged to analyze what data might be used by computer science engineers to write code that generates hurricane tracking models. Then students analyze a MATLAB® computer code that uses the distance formula repetitively to generate a table of data that tracks a hurricane at specific time intervals. Students come to realize that using a computer program to generate the calculations (instead of by hand) is very advantageous for a dynamic situation like tracking storm movements. Their inspection of some MATLAB code helps them understand how it communicates what to do using mathematical formulas, logical instructions and repeated tasks. They also conclude that the example program is too simplistic to really be a useful tool; useful computer model tools must necessarily be much more complex.
In this interactive, students use logic and mathematical skill to place aquatic …
In this interactive, students use logic and mathematical skill to place aquatic animals at locations on a Cartesian graph with cardinal directions. Then, they determine both the vertical and horizontal distances between points. The riddles in the interactive, including one that requires an understanding of rate, have randomized values so that students can practice placing points at different locations and calculating different distances. The accompanying classroom activity provides a review of concepts related to determining the distances between points on a Cartesian graph and a response sheet to help students work with the interactive.
Through this tutorial, you will learn how to solve equations by graphing …
Through this tutorial, you will learn how to solve equations by graphing them on a coordinate plane. Contains several examples with step-by-step solutions and practice exercises for you to complete and check.
Gain a basic understanding of graphing on the coordinate plane by watching …
Gain a basic understanding of graphing on the coordinate plane by watching this easy to understand video tutorial. Additional resources are available as part of a paid subscription service. [10:14]
Rational Numbers Type of Unit: Concept Prior Knowledge Students should be able …
Rational Numbers
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Solve problems with positive rational numbers. Plot positive rational numbers on a number line. Understand the equal sign. Use the greater than and less than symbols with positive numbers (not variables) and understand their relative positions on a number line. Recognize the first quadrant of the coordinate plane.
Lesson Flow
The first part of this unit builds on the prerequisite skills needed to develop the concept of negative numbers, the opposites of numbers, and absolute value. The unit starts with a real-world application that uses negative numbers so that students understand the need for them. The unit then introduces the idea of the opposite of a number and its absolute value and compares the difference in the definitions. The number line and positions of numbers on the number line is at the heart of the unit, including comparing positions with less than or greater than symbols.
The second part of the unit deals with the coordinate plane and extends student knowledge to all four quadrants. Students graph geometric figures on the coordinate plane and do initial calculations of distances that are a straight line. Students conclude the unit by investigating the reflections of figures across the x- and y-axes on the coordinate plane.
Students draw a figure on the coordinate plane that matches a written …
Students draw a figure on the coordinate plane that matches a written description.Key ConceptsOrdered pairs name locations on the coordinate plane. The first coordinate tells how many units to go left or right of the origin (0,0) along the x-axis. The second coordinate tells how many units to go up or down from the origin along the y-axis.Goals and Learning ObjectivesDraw a figure that matches a description of a figure on the coordinate plane.Give coordinates of points on the coordinate plane.Write descriptions of figures on the coordinate plane.
Students revise their work on the assessment task based on feedback from …
Students revise their work on the assessment task based on feedback from the teacher and their peers.Key ConceptsConcepts from previous lessons are integrated into this assessment task: the opposite of a number, integers, absolute value, and graphing points on the coordinate plane. Students apply their knowledge, review their work, and make revisions based on feedback from the teacher and their peers. This process creates a deeper understanding of the concepts.Goals and Learning ObjectivesApply knowledge of the opposite of a number, integers, absolute value, and graphing points on the coordinate plane to solve problems.Track and review a choice of strategy when problem solving.
Here is a site that clearly and thoroughly explains the Cartesian coordinate …
Here is a site that clearly and thoroughly explains the Cartesian coordinate system. There are example problems solved, problems for the student to attempt, and answers to the student problems. Point this site out to students who have been absent or who need additional instruction on this or many other topics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo de 40 días, los estudiantes desarrollan un sistema de coordenadas para el primer cuadrante del plano de coordenadas y lo usan para resolver problemas. Los estudiantes usan la línea numérica familiar como una introducción a la idea de una coordenada, y construyen dos líneas numéricas perpendiculares para crear un sistema de coordenadas en el plano. Los estudiantes ven que, al igual que los puntos en la línea se pueden ubicar por su distancia desde 0, el sistema de coordenadas del plano se puede usar para localizar y trazar puntos utilizando dos coordenadas. Luego usan el sistema de coordenadas para explorar relaciones entre puntos, pares ordenados, patrones, líneas y, de manera más abstracta, las reglas que las generan. Este estudio culmina en una exploración del plano de coordenadas en aplicaciones del mundo real.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0, the planes coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
In this lesson on reviewing fifth-grade geometry concepts, students learn about the …
In this lesson on reviewing fifth-grade geometry concepts, students learn about the mathematical domain, explain why it is important, and complete a variety of practice problems.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.