Updating search results...

Search Resources

130 Results

View
Selected filters:
  • mass
Can It Support You? No Bones about It!
Read the Fine Print
Educational Use
Rating
0.0 stars

After completing the associated lesson and its first associated activity, students are familiar with the 20 major bones in the human body knowing their locations and relative densities. When those bones break, lose their densities or are destroyed, we look to biomedical engineers to provide replacements. In this activity, student pairs are challenged to choose materials and create prototypes that could replace specific bones. They follow the steps of the engineering design process, researching, brainstorming, prototyping and testing to find bone replacement solutions. Specifically, they focus on identifying substances that when combined into a creative design might provide the same density (and thus strength and support) as their natural counterparts. After iterations to improve their designs, they present their bone alternative solutions to the rest of the class. They refer to the measured and calculated densities for fabricated human bones calculated in the previous activity, and conduct Internet research to learn the densities of given fabrication materials (or measure/calculate those densities if not found online).

Subject:
Engineering
Life Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015
Cartesian Diver
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe Pascal's law, Archimedes' principle and the ideal gas law as a Cartesian diver moves within a closed system. The Cartesian diver is neutrally buoyant and begins to sink when an external pressure is applied to the closed system. A basic explanation and proof of this process is provided in this activity, and supplementary ideas for more extensive demonstrations and independent group activities are presented.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Catapults!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe the relationship between the angle of a catapult (a force measurement) and the flight of a cotton ball. They learn how Newton's second law of motion works by seeing directly that F = ma. When they pull the metal "arm" back further, thus applying a greater force to the cotton ball, it causes the cotton ball to travel faster and farther. Students also learn that objects of greater mass require more force to result in the same distance traveled by a lighter object.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Chem4Kids!: Symbols in Chemical Equations
Read the Fine Print
Educational Use
Rating
0.0 stars

Chem4Kids! provides an overview of the symbols representing numerical values in chemical equations. Each symbol is defined and described.

Subject:
Science
Material Type:
Reading
Provider:
Chem4Kids
Date Added:
10/03/2023
Conservation of Mass Gum Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students develop and conduct an experiment using the law of conservation of mass to determine whether or not gum should be considered food. Students will compare the mass swallowed for sugar and sugar-free gum. This could be used to discuss solubility.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Nichol Reilly
Date Added:
02/24/2021
Crash! Bang!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Create Your Own Fidget Spinner
Read the Fine Print
Educational Use
Rating
0.0 stars

How do shape and weight impact the performance of a fidget spinner? This challenge will explore how shapes, weight and force impact the performance of a fidget spinner. Engineering a mechanical device involves designing with a result in mind. This challenge will ask students to explore math, science and engineering design through the device of a fidget spinner.

This is a 3-hour lesson that includes a self-paced interactive module and classroom activities. The teacher guide includes a challenge sequence (timeline), relevance to standards, materials list, assessment, evaluation rubric, and learning extensions.

Lesson objectives: (1) Investigate the basic shapes that make up a fidget spinner. (2) Explore how a fidget spinner works. (3) Design, build and test your own fidget spinner.

Subject:
Career and Technical Education
Engineering
Engineering and Science Technologies
Geometry
Manufacturing
Mathematics
Physics
Science
Technology
Material Type:
Interactive
Lesson
Lesson Plan
Provider:
Siemens
Provider Set:
Hour of Engineering
Date Added:
04/13/2023
The Dancing Scientist
Read the Fine Print
Educational Use
Rating
0.0 stars

Learn about the properties of solid, liquid, and gas while dancing with the famous music group, The Gregory Brothers!

To help understand how water changes states of matter, Scientist Sam brings in the musical group The Gregory Brothers to help teach about the states of matter through an interactive dance. The viewer dances like a solid, liquid and gas and learns that water can change states of matter when temperatures are below 0 degrees Celsius or above 100 degrees Celsius.

Learning Objective:
Classify matter by physical properties, including shape, relative mass, relative temperature, texture, flexibility, and whether material is a solid or liquid.

Subject:
Physical Science
Science
Material Type:
Lesson
Provider:
PBS LearningMedia
Date Added:
11/19/2020
Decreasing Momentum
Read the Fine Print
Educational Use
Rating
0.0 stars

A video module showing that to determine a decrease in momentum you should look at impulse. Videos explores the equation for impulse and its application. Also given in lesson is an example of how to decrease momentum. [4:59]

Subject:
Science
Material Type:
Audio/Video
Provider:
Sophia Learning
Date Added:
12/01/2023
Defying Gravity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are asked how acceleration, mass, momentum and velocity are involved in mountain boarding. [0:32]

Subject:
Science
Material Type:
Lesson
Provider:
PBS LearningMedia
Date Added:
12/01/2022
Density Column Lab - Part 1
Read the Fine Print
Educational Use
Rating
0.0 stars

In this first part of a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate the densities of several common, irregularly shaped objects with the purpose to resolve confusion about mass and density. After this activity, conduct the associated Density Column Lab - Part 2 activity before presenting the associated Density & Miscibility lesson for discussion about concepts that explain what students have observed.

Subject:
Engineering
Mathematics
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Density Column Lab - Part 2
Read the Fine Print
Educational Use
Rating
0.0 stars

Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.

Subject:
Chemistry
Engineering
Life Science
Mathematics
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Barry Williams
Jessica Ray
Phyllis Balcerzak
Date Added:
09/18/2014
Does Your Chewing Gum Lose Its Sweetness?
Read the Fine Print
Educational Use
Rating
0.0 stars

In the first part of the activity, each student chews a piece of gum until it loses its sweetness, and then leaves the gum to dry for several days before weighing it to determine the amount of mass lost. This mass corresponds to the amount of sugar in the gum, and can be compared to the amount stated on the package label. In the second part of the activity, students work in groups to design and conduct new experiments based on questions of their own choosing. These questions arise naturally from observations during the first experiment, and from students' own experiences with and knowledge of the many varieties of chewing and bubble gums available.

Subject:
Engineering
Health and Physical Education
Nutrition
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Don't Crack Humpty
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups are provided with a generic car base on which to design a device/enclosure to protect an egg on or in the car as it rolls down a ramp at increasing slopes. During this in-depth physics/science/technology activity, student teams design, build and test their creations to meet the design challenge, and are expected to perform basic mathematical calculations using collected data, including a summative cost to benefit ratio.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
The Eight Planets: Earth
Read the Fine Print
Educational Use
Rating
0.0 stars

Excellent Eight Planets site that provides a vast amount of information about planet Earth. Very comprehensive and complete site.

Subject:
Science
Material Type:
Reading
Provider:
Nine Planets
Date Added:
12/01/2023
Elementary School Engineering Design Field Day
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit provides the framework for conducting an “engineering design field day” that combines 6 hands-on engineering activities into a culminating school (or multi-school) competition. The activities are a mix of design and problem-solving projects inspired by real-world engineering challenges: kite making, sail cars, tall towers, strong towers and a ball and tools obstacle course. The assortment of events engage children who have varied interests and cover a range of disciplines such as aerospace, mechanical and civil engineering. An optional math test—for each of grades 1-6—is provided as an alternative activity to incorporate into the field day event. Of course, the 6 activities in this unit also are suitable to conduct as standalone activities that are unaffiliated with a big event.

Subject:
Engineering
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
Units
Author:
Alexander Kon
Alisa Lee
Andrew Palermo
Christopher Langel
Destiny Garcia
Duff Harold
Eric Anderson
Jean Vandergheynst
Jeff Kessler
Josh Claypool
Kelley Hestmark
Lauren Jabusch
Nadia Richards
Sara Pace
Tiffany Tu
Travis Smith
Date Added:
02/17/2017