This article provides elementary school teachers with background knowledge about science concepts …
This article provides elementary school teachers with background knowledge about science concepts needed to understand the first of seven essential principles of climate literacy--the sun is the primary source of energy for our climate system. Graphs, diagrams, and oneline resources provide more background for the teacher. The article appears in a free online magazine that focuses on the seven essential princples of the climate sciences.
This is the last of five sound lessons, and it introduces acoustics …
This is the last of five sound lessons, and it introduces acoustics as the science of studying and controlling sound. Students learn how different materials reflect and absorb sound.
Four unit plans provide opportunities for in-depth explorations of important foundational climate …
Four unit plans provide opportunities for in-depth explorations of important foundational climate concepts -- weather, water as a solid, liquid and gas, and the water cycle -- that are appropriate for K-2 and 3-5 learners. These unit plans incorporate many of the lessons highlighted in other articles in this issue of the online magazine Beyond Weather and the Water Cycle. The magazine is structured around the essential principles of the climate sciences.
Rainbows and sunsets are called "atmospheric optics". They can be caused by …
Rainbows and sunsets are called "atmospheric optics". They can be caused by light being absorbed, reflected, scattered, refracted, or diffracted by particles in the atmosphere. Learn all about different atmospheric optics along with beautiful photographs in this website.
Engineers design and implement many creative techniques for managing stormwater at its …
Engineers design and implement many creative techniques for managing stormwater at its sources in order to improve and restore the hydrology and water quality of developed sites to pre-development conditions. Through the two lessons in this unit, students are introduced to green infrastructure (GI) and low-impact development (LID) technologies, including green roofs and vegetative walls, bioretention or rain gardens, bioswales, planter boxes, permeable pavement, urban tree canopies, rainwater harvesting, downspout disconnection, green streets and alleys, and green parking. Student teams take on the role of stormwater engineers through five associated activities. They first model the water cycle, and then measure transpiration rates and compare native plant species. They investigate the differences in infiltration rates and storage capacities between several types of planting media before designing their own media mixes to meet design criteria. Then they design and test their own pervious pavement mix combinations. In the culminating activity, teams bring together all the concepts as well as many of the materials from the previous activities in order to create and install personal rain gardens. The unit prepares the students and teachers to take on the design and installation of bigger rain garden projects to manage stormwater at their school campuses, homes and communities.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.