Explore the interactions between various combinations of two atoms. Turn on the …
Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.
Are all atoms of an element the same? How can you tell …
Are all atoms of an element the same? How can you tell one isotope from another? Use the sim to learn about isotopes and how abundance relates to the average atomic mass of an element.
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical …
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration
This University of St. Andrews page provides an interesting discussion of the …
This University of St. Andrews page provides an interesting discussion of the beginning of the age of quantum physics. (Quantum physics/mechanics is thought to govern the energy levels of electrons in atoms.) There is a references link at the bottom of the page.
Find out about Ernest Rutherford, the father of nuclear physics. He made …
Find out about Ernest Rutherford, the father of nuclear physics. He made a range of important contributions to this field and also won a Nobel Prize in 1908 for his work in chemistry. [1:28]
This hands-on activity explores the concept of static electricity. Students attract an …
This hands-on activity explores the concept of static electricity. Students attract an O-shaped piece of cereal to a charged comb and watch the cereal jump away when it touches the comb. Students also observe Styrofoam pellets pulling towards a charged comb, then leaping back to the table.
Dr. Chris Muhlstein explains the challenge of studying materials that are too …
Dr. Chris Muhlstein explains the challenge of studying materials that are too small to see with the naked eye. The technique some scientists use to observe individual atoms is similar to the technique of using touch to find out the size, shape, and location of objects in a small room. [1:05]
This lesson will introduce the subatomic particles and explain where they are …
This lesson will introduce the subatomic particles and explain where they are located and how they interact. It is 4 of 7 in the series titled "Subatomic Particles."
This lesson will introduce the subatomic particles and explain where they are …
This lesson will introduce the subatomic particles and explain where they are located and how they interact. It is 6 of 7 in the series titled "Subatomic Particles."
In an activity that integrates science and art, students see, experience and …
In an activity that integrates science and art, students see, experience and harness the phenomenon of surface tension as they create beautiful works of art. Students conduct two experiments related to surface tension floating objects on the surface of water and creating original artwork using floating inks. They also learn historical and cultural information through an introduction to the ancient Japanese art form of suminagashi. They take the topic a step further by discussing how an understanding of surface tension can be applied to solve real-world engineering problems and create useful inventions.
How do we know what matter is made of? The quest for …
How do we know what matter is made of? The quest for the atom has been a long one, beginning 2,400 years ago with the work of a Greek philosopher and later continued by a Quaker and a few Nobel Prize-winning scientists. Theresa Doud details the history of atomic theory. [5:22]
Students come to understand static electricity by learning about the nature of …
Students come to understand static electricity by learning about the nature of electric charge, and different methods for charging objects. In a hands-on activity, students induce an electrical charge on various objects, and experiment with electrical repulsion and attraction.
Dr. Chris Muhlstein explains the challenge of studying materials that are too …
Dr. Chris Muhlstein explains the challenge of studying materials that are too small to see with the naked eye. The technique some scientists use to observe individual atoms is similar to the technique of using touch to find out the size, shape, and location of objects in a dark room. By using a very small, sharp sensor, scientists can create an image of atoms. [1:17]
This lesson plan examines the properties of elements and the periodic table. …
This lesson plan examines the properties of elements and the periodic table. Students learn the basic definition of an element and the 18 elements that build most of the matter in the universe. The periodic table is described as one method of organization for the elements. The concepts of physical and chemical properties are also reviewed.
Students are introduced to the concept of electricity by identifying it as …
Students are introduced to the concept of electricity by identifying it as an unseen, but pervasive and important presence in their lives. They are also introduced to the idea of engineers making, controlling and distributing electricity. The main concepts presented are the science of electricity and the careers that involve an understanding of electricity. Students first review the structure of atoms and then learn that electrons are the particles behind electrical current and the motivation for electron movement. They compare conductors and insulators based on their capabilities for electron flow. Then water and electrical systems are compared as an analogy to electrical current. They learn the differences between static and dynamic forms of electricity. A PowerPoint(TM) presentation is included, with review question/answer slides, as well as assessment handouts to practice using electricity-related terms through storytelling and to research electricity-related and electrical engineering careers.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.