This activity is a series of game-like lessons that assist the student …
This activity is a series of game-like lessons that assist the student in developing the logic skills needed to read mass spectrometer output and formulate the identity of an unknown molecule. As students endeavor to identify the unknown they must apply fundamental chemistry knowledge including formula mass, isotopes, periodic table, relative abundance, interpreting graphs, organic chemistry, ionization, bonding rules, and structural formulas. Based on an activity presented by Olaf Runquist, Professor, Hamline University.
Two astronauts aboard the International Space Station (ISS) describe mass and weight …
Two astronauts aboard the International Space Station (ISS) describe mass and weight and the differences between the two in this video from NASA’s Teaching From Space initiative.
Students learn about slope, determining slope, distance vs. time graphs through a …
Students learn about slope, determining slope, distance vs. time graphs through a motion-filled activity. Working in teams with calculators and CBL motion detectors, students attempt to match the provided graphs and equations with the output from the detector displayed on their calculators.
This is an indoor lab that uses a boat simulation to demonstrate …
This is an indoor lab that uses a boat simulation to demonstrate the concepts of mass, volume and density, and their relationship to displacement. It is a problem solving activity that encourages student creativity resulting in a variety of valid solutions.
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT …
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT -based activity. They measure the position of an oscillating platform using a ultrasonic sensor and perform statistical analysis to determine the mean, mode, median, percent difference and percent error for the collected data.
Students learn about sound waves and use them to measure distances between …
Students learn about sound waves and use them to measure distances between objects. They explore how engineers incorporate ultrasound waves into medical sonogram devices and ocean sonar equipment. Students learn about properties, sources and applications of three types of sound waves, known as the infra-, audible- and ultra-sound frequency ranges. They use ultrasound waves to measure distances and understand how ultrasonic sensors are engineered.
Students learn how volume, viscosity and slope are factors that affect the …
Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.
Through investigating the nature, sources and level of noise produced in their …
Through investigating the nature, sources and level of noise produced in their environment, students are introduced to the concept of noise pollution. They learn about the undesirable and disturbing effects of noise and the resulting consequences on people's health, as well as on the health of the environment. They use a sound level meter that consists of a sound sensor attached to the LEGO® NXT Intelligent Brick to record the noise level emitted by various sources. They are introduced to engineering concepts such as sensors, decibel (dB) measurements, and sound pressure used to measure the noise level. Students are introduced to impairments resulting from noise exposure such as speech interference, hearing loss, sleep disruption and reduced productivity. They identify potential noise pollution sources, and based on recorded data, they classify these sources into levels of annoyance. Students also explore the technologies designed by engineers to protect against the harmful effects of noise pollution.
Students learn first-hand the relationship between force, area and pressure. They use …
Students learn first-hand the relationship between force, area and pressure. They use a force sensor built from a LEGO® MINDSTORMS® NXT kit to measure the force required to break through a paper napkin. An interchangeable top at the end of the force sensor enables testing of different-sized areas upon which to apply pressure. Measuring the force, and knowing the area, students compute the pressure. This leads to a concluding discussion on how these concepts are found and used in engineering and nature.
This is a physics lab where students test their reaction time by …
This is a physics lab where students test their reaction time by using the acceleration due to gravity. The use of Excel is introduced in this lab to analyze data.
Students calculate the viscosity of various household fluids by measuring the amount …
Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.
This activity is a lab investigation where students gather data about the …
This activity is a lab investigation where students gather data about the masses of various solid objects found in a classroom. The students graph their data, compare their data, and draw conclusions about what kinds of materials contain more matter than others.
This activity is an inquiry lesson where students learn how to accurately …
This activity is an inquiry lesson where students learn how to accurately read a thermometer and then set up an investigation to compare the temperatures of different materials or locations.
This activity is an guided inquiry based lesson where students measure and …
This activity is an guided inquiry based lesson where students measure and graph data on a two-coordinate graph the growth of a toy animal submerged in water over a period of time.
These exercises target student misconceptions about how to properly measure voltage and …
These exercises target student misconceptions about how to properly measure voltage and current in simple DC circuits by letting them investigate different meter arrangements without fear of damaging equipment. These activities also are designed to lead to other investigations about simple DC circuits.
After conducting the associated activity, students are introduced to the material behavior …
After conducting the associated activity, students are introduced to the material behavior of elastic solids. Engineering stress and strain are defined and their importance in designing devices and systems is explained. How engineers measure, calculate and interpret properties of elastic materials is addressed. Students calculate stress, strain and modulus of elasticity, and learn about the typical engineering stress-strain diagram (graph) of an elastic material.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.