In this activity, students determine their own eyesight and calculate what a …
In this activity, students determine their own eyesight and calculate what a good average eyesight value for the class would be. Students learn about technologies to enhance eyesight and how engineers play an important role in the development of these technologies.
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Explain how electromagnetic waves differ from sound waves Trace the path of light through the eye to the point of the optic nerve Explain tonic activity as it is manifested in photoreceptors in the retina
Students examine the structure and function of the human eye, learning some …
Students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.
Students are introduced to sound energy concepts and how engineers use sound …
Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.
Edward Hirsch's poem "Fast Break" captures a single slow-motion play on a …
Edward Hirsch's poem "Fast Break" captures a single slow-motion play on a basketball court. In this video [6:06] excerpted from Poetry in America, join Hirsch, host Elisa New, NBA players Shaquille O'Neal, Pau Gasol, and Shane Battier, and a group of pick-up basketball players as they use basketball to understand poetry, and poetry to better understand the game of basketball. Hirsch himself reveals how he shaped his couplets to represent offense and defense, teamwork and rivalry, enduring friendship and human mortality. Shaquille does the play by play, heading this episode's team of on-court interpreters who explore "Fast Break" as sport, art, and lens on human character.
Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They …
Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They are asked to write journal responses to the question and brainstorm what information they require to answer the question. Their ideas are shared with the class and recorded. Then, students share their ideas with each other and brainstorm any additional ideas. Next, students draw a basis for the average peripheral vision of humans and then compare that range to the range of two different focal lengths in a camera. Through the associated activity provides, students see the differences between human and computer vision.
This site from Georgia State University Physics Department provides a discussion of …
This site from Georgia State University Physics Department provides a discussion of how light refracts through the lenses of a microscope. Demonstrates the parts of a microscope and includes an interactive form in which the magnifying power is calculated.
Students explore their peripheral vision by reading large letters on index cards. …
Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
An interactive simulation that teaches about refraction, lens, and optics. Students manipulate …
An interactive simulation that teaches about refraction, lens, and optics. Students manipulate the focal length of the lens, and move the object, lens, and screen in order to see how the image is affected. This simulation can either be downloaded or played online and includes handouts, lesson plans, and additional materials.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to: Describe …
By the end of this section, you will be able to:
Describe the basic anatomy of the visual system Discuss how rods and cones contribute to different aspects of vision Describe how monocular and binocular cues are used in the perception of depth
Provides a discussion of curved mirrors and ray diagrams. Shows and explains …
Provides a discussion of curved mirrors and ray diagrams. Shows and explains the process of drawing a ray diagram to determine the image location, size, and orientation.
Student groups rotate through four stations to examine light energy behavior: refraction, …
Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.