Updating search results...

Search Resources

176 Results

View
Selected filters:
Rock Solid
Read the Fine Print
Educational Use
Rating
0.0 stars

Rocks cover the earth's surface, including what is below or near human-made structures. With rocks everywhere, breaking rocks can be hazardous and potentially disastrous to people. Students are introduced to three types of material stress related to rocks: compressional, torsional and shear. They learn about rock types (sedimentary, igneous and metamorphic), and about the occurrence of stresses and weathering in nature, including physical, chemical and biological weathering.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Rooftop Gardens
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Can rooftop gardens reduce the temperature inside and outside houses? Teams each design and construct two model buildings using foam core board, one with a "green roof" and the other with a black tar paper roof. They measure and graph the ambient and inside building temperatures while under heat lamps and fans. Then students analyze the data and determine whether the rooftop gardens are beneficial to the inhabitants.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Rural Energy in China: How Can Engineers Make a Difference?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about five types of renewable energy that are part of engineering solutions to help people in rural communities use less and cleaner energy for cooking and heating. Specifically, students learn about the pollution and health challenges facing families in rural China, and they are introduced to the concept of optimization. Through an energy game, students differentiate between renewable and non-renewable sources of energy.

Subject:
Engineering
Environmental Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Watrous
Denise W. Carlson
Janet Yowell
Stephanie Rivale
Date Added:
09/18/2014
Saltwater Circuit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.

Subject:
Chemistry
Engineering
Environmental Science
Life Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Save a Life, Clean Some Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams practice water quality analysis through turbidity measurement and coliform bacteria counts. They use information about water treatment processes to design prototype small-scale water treatment systems and test the influent (incoming) and effluent (outgoing) water to assess how well their prototypes produce safe water to prevent water-borne illnesses.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christie Chatterley
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Saving a Life: Heart Valve Replacement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their knowledge about how healthy heart valves function to design, construct and implant prototype replacement mitral valves for hypothetical patients' hearts. Building on what they learned in the associated lesson about artificial heart valves, combined with the testing and scoring of their prototype heart valve designs in this activity, students discover the pros and cons of different types of artificial heart valves based on materials, surgery requirements, and lifespan.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Terry
Brandi Briggs
Carleigh Samson
Denise W. Carlson
Date Added:
09/18/2014
Scaling, Go Figure!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how different characteristics of shapes—side lengths, perimeter and area—change when the shapes are scaled, either enlarged or reduced. Student pairs conduct a “scaling investigation” to measure and calculate shape dimensions (rectangle, quarter circle, triangle; lengths, perimeters, areas) from a bedroom floorplan provided at three scales. They analyze their data to notice the mathematical relationships that hold true during the scaling process. They see how this can be useful in real-world situations like when engineers design wearable or implantable biosensors. This prepares students for the associated activity in which they use this knowledge to help them reduce or enlarge their drawings as part of the process of designing their own wearables products. Pre/post-activity quizzes, a worksheet and wrap-up concepts handout are provided.

Subject:
Career and Technical Education
Mathematics
Material Type:
Lesson
Provider:
TeachEngineering
Author:
Denise W. Carlson
Evelynne Pyne
Lauchlin Blue
Date Added:
02/17/2021
Seismic Waves: How Earthquakes Move the Earth
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the types of seismic waves produced by earthquakes and how they move the Earth. The dangers of earthquakes are presented as well as the necessity for engineers to design structures for earthquake-prone areas that are able to withstand the forces of seismic waves. Students learn how engineers build shake tables that simulate the ground motions of the Earth caused by seismic waves in order to test the seismic performance of buildings.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Service-Based Engineering Design Projects
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit describes a general approach to guiding students to complete service-based engineering design projects, with specific examples provided in detail as associated activities. With your class, brainstorm ideas for engineering designs that benefit your community or a specific person in your community. Then, guided by the steps of the engineering design process, have students research to understand background science and math, meet their client to understand the problem, and create, test and improve prototype devices. Note that service-based projects often take more time to prepare, especially if you arrange for a real client. However, the authors notice that students of both genders and all ethnicities tend to respond with more enthusiasm and interest to altruistic projects.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alison Pienciak
Denise W. Carlson
Eszter Horanyi
Malinda Schaefer Zarske
Date Added:
09/18/2014
Shake It Up! Engineering for Seismic Waves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about how engineers design and build shake tables to test the ability of buildings to withstand the various types of seismic waves generated by earthquakes. Just like engineers, students design and build shake tables to test their own model buildings made of toothpicks and mini marshmallows. Once students are satisfied with the performance of their buildings, they put them through a one-minute simulated earthquake challenge.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Shallow & Deep Foundations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the critical nature of foundations as they learn differences between shallow and deep foundations, including the concepts of bearing pressure and settlement. Using models representing a shallow foundation and a deep pile foundation, they test, see and feel the effects in a cardboard box test bed composed of layers of pebbles, soil and sand. They also make bearing pressure calculations and recommendations for which type of foundations to use in various engineering scenarios.

Subject:
Practitioner Support
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
A Shot Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their understanding of projectile physics and fluid dynamics to find the water pressure in water guns. By measuring the range of the water jets, they are able to calculate the theoretical pressure. Students create graphs to analyze how the predicted pressure relates to the number of times they pump the water gun before shooting.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
James Prager
Karen King
Date Added:
09/18/2014
Show Me the Money
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the major factors that comprise the design and construction cost of a modern bridge. Before a bridge design is completed, engineers provide overall cost estimates for construction of the bridge. Students learn about the components that go into estimating the total cost, including expenses for site investigation, design, materials, equipment, labor and construction oversight, as well as the trade-off between a design and its cost.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Slide Right on By Using an Inclined Plane
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore building a pyramid, learning about the simple machine called an inclined plane. They also learn about another simple machine, the screw, and how it is used as a lifting or fastening device. During a hands-on activity, students see how the angle of inclination and pull force can make it easier (or harder) to pull an object up an inclined plane.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Travis Reilly
Date Added:
09/18/2014
Sliders
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about two types of friction static and kinetic and the equation that governs them. They also measure the coefficient of static friction experimentally.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Smoke and Mirrors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students develop a persuasive peer-to-peer case against smoking, with the goal to understand how language usage can influence perception, attitudes and behavior.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Soil Core Sampling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about one method used in environmental site assessments. They practice soil sampling by creating soil cores, studying soil profiles and characterizing soil profiles in borehole logs. They use their analysis to make predictions about what is going on in the soil and what it might mean to an engineer developing the area.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Marissa Hagan Forbes
Date Added:
10/14/2015
Soil Investigations
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics about soil, including its formation, characteristics and importance. They are also introduced to soil profiles and how engineers conduct site investigations to learn about soil quality for development, contamination transport, and assessing the general environmental health of an area.

Subject:
Engineering
Environmental Science
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Marissa Hagan Forbes
Date Added:
09/18/2014
Sound Environment Shapers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the sound environment as an important aspect of a room or building. Several examples of acoustical engineering design for varied environments are presented. Students learn the connections between the science of sound waves and engineering design for sound environments.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
Date Added:
09/18/2014
Sounds All Around
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds. They learn to recognize different pitches, and see how engineers must test designs and materials to achieve the best amplifying properties.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lesley Herrmann
Malinda Schaefer Zarske
William Surles
Date Added:
10/14/2015