Updating search results...

Search Resources

237 Results

View
Selected filters:
  • design
Java Programming of OCR
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups use the Java programming language to implement the algorithms for optical character recognition (OCR) that they developed in the associated lesson. They use different Java classes (provided) to test and refine their algorithms. The ultimate goal is to produce computer code that recognizes a digit on a scoreboard. Through this activity, students experience a very small part of what software engineers go through to create robust OCR methods. This software design lesson/activity set is designed to be part of a Java programming class.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Derek Babb
Date Added:
09/18/2014
Journey to the Afterlife
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to design models of Egyptian funerary barges for the purpose of transporting mummies through the underworld to the afterlife. Planning the boat designs requires an understanding of ancient culture and beliefs so the mummies are transported safely through the perils of the underworld. Students design and build prototypes using materials and tools like the ancient Egyptians had at their disposal. Then they do the same with modern materials and techniques, forming an awareness of the similarities and differences of the barge designs between the ancient materials and tools (technologies) and today's technologies, which are evolved from the earlier ways.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anthony Trinh
Bryan Licciadri
Heather Blackwell
Date Added:
09/18/2014
LEGO Robots
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members enter the FIRST LEGO League Challenge tournament and work as a team to program their LEGO robot to navigate a complex obstacle course. [6:01]

Subject:
Mathematics
Science
Material Type:
Audio/Video
Lesson
Provider:
PBS LearningMedia
Date Added:
12/01/2022
Learn to Build a Rocket in 5 Days or Your Money Back
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students discover the entire process that goes into designing a rocket for any customer. In prior lessons, students learned how rockets work, but now they learn what real-world decisions engineers have to make when designing and building a rocket. They learn about important factors such as supplies, ethics, deadlines and budgets. Also, students learn about the Engineering process, and recognize that the first design is almost never the final design. Re-Engineering is a critical step in creating a rocket.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Let's Move It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore methods employing simple machines likely used in ancient pyramid building, as well as common modern-day material transportation. They learn about the wheel and axle as a means to transport materials from rock quarry to construction site. They also learn about different types and uses of a lever for purposes of transport. In an open-ended design activity, students choose from everyday materials to engineer a small-scale cart and lever system to convey pyramid-building materials.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Glen Sirakavit
Jacquelyn F. Sullivan
Lawrence E. Carlson
Luz Quiñónez
Malinda Schaefer Zarske
Date Added:
09/18/2014
Let's Take a Slice of Pi
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as a team, students discover that the value of pi (3.1415926...) is a constant and applies to all different sized circles. The team builds a basic robot and programs it to travel in a circular motion. A marker attached to the robot chassis draws a circle on the ground as the robot travels the programmed circular path. Students measure the circle's circumference and diameter and calculate pi by dividing the circumference by the diameter. They discover the pi and circumference relationship; the circumference of a circle divided by the diameter is the value of pi.

Subject:
Engineering
Mathematics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carole Chen
Michael Hernandez
Date Added:
09/18/2014
Light Your Way
Read the Fine Print
Educational Use
Rating
0.0 stars

During a power failure, or when we go outside at night, we grab a flashlight so we can find our way. What happens inside a flashlight that makes the bulb light up? Why do we need a switch to turn on a flashlight? Have you ever noticed that for the flashlight to work you must orient the batteries a certain way as you insert them into the casing? Many people do not know that a flashlight is a simple series circuit. In this hands-on activity, students build this everyday household item and design their own operating series circuit flashlights.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Load It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students take a hands-on look at the design of bridge piers (columns). First they brainstorm types of loads that might affect a Colorado bridge. Then they determine the maximum possible load for that scenario, and calculate the cross-sectional area of a column designed to support that load. Choosing from clay, foam or marshmallows, they create model columns and test their calculations.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Make an Alarm!
Read the Fine Print
Educational Use
Rating
0.0 stars

After reading the story "Dear Mr. Henshaw" by Beverly Cleary, student groups create alarm systems to protect something in the classroom, just as the main character Leigh does to protect his lunchbox from thieves. Students learn about alarms and use their creativity to devise multi-step alarm systems to protect their lockers, desk, pets or classroom door. Note: This activity can also be done without reading the Cleary book.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Mars Rover App Creation
Read the Fine Print
Educational Use
Rating
0.0 stars

Based on their experience exploring the Mars rover Curiosity and learning about what engineers must go through to develop a vehicle like Curiosity, students create Android apps that can control LEGO MINDSTORMS(TM) NXT robots, simulating the difficulties the Curiosity rover could encounter. The activity goal is to teach students programming design and programming skills using MIT's App Inventor software as the vehicle for the learning. The (free to download) App Inventor program enables Android apps to be created using building blocks without having to actually know a programming language. At activity end, students are ready to apply what they learn to write other applications for Android devices.

Subject:
Computer Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Materials Properties Make a Difference
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the materials properties such as acoustical absorptivity, light reflectivity, thermal conductivity, hardness, and water resistance of various materials. They use sound, light and temperature sensors to collect data on various materials. They practice making design decisions about what materials would be best to use for specific purposes and projects, such as designing houses in certain environments to meet client requirements. After testing, they use the provided/tested materials to design and build model houses to meet client specifications.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rezwana Uddin
Date Added:
09/18/2014
Math, Grade 7, Zooming In On Figures
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Zooming In On Figures

Unit Overview

Type of Unit: Concept; Project

Length of Unit: 18 days and 5 days for project

Prior Knowledge

Students should be able to:

Find the area of triangles and special quadrilaterals.
Use nets composed of triangles and rectangles in order to find the surface area of solids.
Find the volume of right rectangular prisms.
Solve proportions.

Lesson Flow

After an initial exploratory lesson that gets students thinking in general about geometry and its application in real-world contexts, the unit is divided into two concept development sections: the first focuses on two-dimensional (2-D) figures and measures, and the second looks at three-dimensional (3-D) figures and measures.
The first set of conceptual lessons looks at 2-D figures and area and length calculations. Students explore finding the area of polygons by deconstructing them into known figures. This exploration will lead to looking at regular polygons and deriving a general formula. The general formula for polygons leads to the formula for the area of a circle. Students will also investigate the ratio of circumference to diameter ( pi ). All of this will be applied toward looking at scale and the way that length and area are affected. All the lessons noted above will feature examples of real-world contexts.
The second set of conceptual development lessons focuses on 3-D figures and surface area and volume calculations. Students will revisit nets to arrive at a general formula for finding the surface area of any right prism. Students will extend their knowledge of area of polygons to surface area calculations as well as a general formula for the volume of any right prism. Students will explore the 3-D surface that results from a plane slicing through a rectangular prism or pyramid. Students will also explore 3-D figures composed of cubes, finding the surface area and volume by looking at 3-D views.
The unit ends with a unit examination and project presentations.

Subject:
Geometry
Mathematics
Provider:
Pearson
Math, Grade 7, Zooming In On Figures, Applying Scale to Project
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will resume their project and decide on dimensions for their buildings. They will use scale to calculate the dimensions and areas of their model buildings when full size. Students will also complete a Self Check in preparation for the Putting It Together lesson.Key ConceptsThe first part of the project is essentially a review of the unit so far. Students will find the area of a composite figure—either a polygon that can be broken down into known areas, or a regular polygon. Students will also draw the figure using scale and find actual lengths and areas.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.Find the area of a composite figure.SWD: Consider what supplementary materials may benefit and support students with disabilities as they work on this project:Vocabulary resource(s) that students can reference as they work:List of formulas, with visual supports if appropriateClass summaries or lesson artifacts that help students to recall and apply newly introduced skillsChecklists of expectations and steps required to promote self-monitoring and engagementModels and examplesStudents with disabilities may take longer to develop a solid understanding of newly introduced skills and concepts. They may continue to require direct instruction and guided practice with the skills and concepts relating to finding area and creating and interpreting scale drawings. Check in with students to assess their understanding of newly introduced concepts and plan review and reinforcement of skills as needed.ELL: As academic vocabulary is reviewed, be sure to repeat it and allow students to repeat after you as needed. Consider writing the words as they are being reviewed. Allow enough time for ELLs to check their dictionaries if they wish.

Subject:
Geometry
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math, Grade 7, Zooming In On Figures, Changing Scale
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students further explore scale, taking a scale drawing floor plan and redrawing it at a different scale.Key ConceptsStudents explore change from one scale to another, focusing on the ratios. Students will draw a scale model of a house.GoalsRedraw a scale drawing at a different scale.Find measurements using a scale drawing.

Subject:
Geometry
Ratios and Proportions
Material Type:
Lesson Plan
Author:
Chris Adcock
Date Added:
03/01/2022
Math Interactives: Exploring Surface Area and Volume
Read the Fine Print
Educational Use
Rating
0.0 stars

This multimedia Learn Alberta math resource looks at surface area and volume and how math involved in the design of large inflatable shapes. The accompanying interactive component lets students investigate a variety of cylinders to get a target volume and surface area. Be sure to follow the link to the printable activity included to reinforce target skills. A video accompanies the lesson to show real-life application of the lesson's content.

Subject:
Mathematics
Material Type:
Interactive
Provider:
Learn Alberta
Date Added:
08/07/2023
Maximum Mentos Fountain
Read the Fine Print
Educational Use
Rating
0.0 stars

Students play the role of engineers as they test, design and build Mentos(TM) fountains a dramatic example of how potential energy (stored energy) can be converted to kinetic energy (motion). They are challenged to work together as a class to optimize the design of the basic soda/candy geyser made by the teacher. To do this, three research teams each investigate how a different variable nozzle shape, soda temperature, number of candies affects fountain height. They devise and run experimental tests to determine the best variable values. Then they combine their results to design the highest fountain to compete head-to-head with the teacher's geyser design.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015