Updating search results...

Search Resources

1869 Results

View
Selected filters:
  • Engineering
Paper Circuits Greeting Cards
Read the Fine Print
Educational Use
Rating
0.0 stars

Light up your love with paper circuits this Valentine’s Day—no soldering required! Create a sure-to-impress flashing birthday card or design a light-up Christmas card—all with paper circuits! In this activity, students are guided through the process to create simple paper circuitry using only copper tape, a coin cell battery, a light-emitting diode (LED) and small electronic components such as a LilyPad Button Board. Making light-up greeting cards with paper circuitry is great way to teach the basics of how circuits function while giving students an outlet to express their artistic creativity.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Devin Rourke
Date Added:
03/27/2017
Paper Drop Design Competition
Read the Fine Print
Educational Use
Rating
0.0 stars

Using paper, paper clips and tape, student teams design flying/falling devices to stay in the air as long as possible and land as close as possible to a given target. Student teams use the steps of the engineering design process to guide them through the initial conception, evaluation, testing and re-design stages. The activity culminates with a classroom competition and scoring to evaluate how each team's design performed.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Parallel and Intersecting Lines—A Collision Course?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as civil engineers developing safe railways as a way to strengthen their understanding of parallel and intersecting lines. Using pieces of yarn to visually represent line segments, students lay down "train tracks" on a carpeted floor, and make guesses as to whether these segments are arranged in parallel or non-parallel fashion. Students then test their tracks by running two LEGO® MINDSTORMS® NXT robots to observe the consequences of their track designs, and make safety improvements. Robots on intersecting courses face imminent collision, while robots on parallel courses travel safely.

Subject:
Engineering
Geometry
Mathematics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ursula Koniges
Date Added:
09/18/2014
Parametric Modeling with OnShape (Lesson 1 of 4): The Basics of OnShape
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn the basics of 3D modeling in OnShape by following a tutorial video and designing a part for a time machine.

Estimated time required: 2-3 class periods.

Technology required for this lesson: 3D Modeling Software, Digital Fabrication Tools, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Mathematics
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Parametric Modeling with OnShape (Lesson 2 of 4): Advanced Extrusions
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson's activity, students will use OnShape to design and 3D Print their own Smartphone Case.

Estimated time required: 2-3 class periods.

Technology required for this lesson: 3D Modeling Software, Digital Fabrication Tools, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Mathematics
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Parametric Modeling with OnShape (Lesson 3 of 4): The Revolve Tool
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson students will use the Revolve Tool in OnShape to design complex circular parts, and they will create their own Custom Rims for an electric car.

Estimated time required: 2-3 class periods.

Technology required for this lesson: 3D Modeling Software, Digital Fabrication Tools, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Mathematics
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Parametric Modeling with OnShape (Lesson 4 of 4): Assemblies
Read the Fine Print
Educational Use
Rating
0.0 stars

In the year 2050, robots are everywhere—they clean our houses, build our products, and even wash the dishes. Since a robot is made up of multiple moving parts, in this lesson, students will learn how to create multiple parts in OnShape, then put them together in an assembly.

Estimated time required: 2-3 class periods.

Technology required for this lesson: 3D Modeling Software, Digital Fabrication Tools, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Mathematics
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Park It!
Read the Fine Print
Educational Use
Rating
0.0 stars

The difference between an architect and an engineer is sometimes confusing because their roles in building design can be similar. Students experience a bit of both professions by following a set of requirements and meeting given constraints as they create a model parking garage. They experience the engineering design process first-hand as they design, build and test their models. They draw a blueprint for their design, select the construction materials and budget their expenditures. They also test their structures for strength and find their maximum loads.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Particle Detectives
Unrestricted Use
Public Domain
Rating
0.0 stars

Grab your magnifying glass and your notepads! In this Nov. 20, 2020, Live Science presentation, learn how Berkeley Lab physicists investigate the mysterious world of particle physics. They will share the patterns and clues they use to detect particles as well as the tools they use to find them!

Subject:
Engineering
Physics
Science
Material Type:
Audio/Video
Lecture
Provider:
Lawrence Berkley National Lab
Author:
Lawrence Berkley National Lab
Date Added:
11/08/2024
Particle Sensing: The Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a short lesson on the Coulter principle—an electronic method to detect microscopic particles and determine their concentration in fluid. Depending on the focus of study, students can investigate the industrial and medical applications of particle detection, the physics of fluid flow and electric current through the apparatus, or the chemistry of the electrolytes used in the apparatus.

Subject:
Engineering
Life Science
Physics
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
Passing the Bug
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply concepts of disease transmission to analyze infection data, either provided or created using Bluetooth-enabled Android devices. This data collection may include several cases, such as small static groups (representing historically rural areas), several roaming students (representing world-travelers), or one large, tightly knit group (representing urban populations). To explore the algorithms to a deeper degree, students may also design their own diseases using the App Inventor framework.

Subject:
Engineering
Life Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Douglas Bertelsen
Date Added:
09/18/2014
Passive Solar Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to passive solar design for buildings an approach that uses the sun's energy and the surrounding climate to provide natural heating and cooling. They learn about some of the disadvantages of conventional heating and cooling and how engineers incorporate passive solar designs into our buildings for improved efficiency.

Subject:
Engineering
Environmental Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jonathan MacNeil
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Path of Electrons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in an interactive "hot potato" demonstration to gain an appreciation for the flow of electrons through a circuit. Students role play the different parts of a simple circuit and send small items representing electrons (paper or candy pieces) through the circuit.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Pea Soup Ponds
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.

Subject:
Engineering
Life Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Penny Perfect Properties (Solid-Liquid Interactions)
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the property dependence between liquid and solid interfaces and determine observable differences in how liquids react to different solid surfaces. They compare copper pennies and plastic "coins" as the two test surfaces. Using an eye dropper to deliver various fluids onto the surfaces, students determine the volume and mass of a liquid that can sit on the surface. They use rulers, scales, equations of volume and area, and other methods of approximation and observation, to make their own graphical interpretations of trends. They apply what they learned to design two super-surfaces (from provided surface treatment materials) that arecapable of holding the most liquid by volume and by mass. Cost of materials is a parameter in their design decisions.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Date Added:
09/18/2014
Peripheral Vision Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore their peripheral vision by reading large letters on index cards. Then they repeat the experiment while looking through camera lenses, first a lens with a smaller focal length and then a lens with a larger focal length. Then they complete a worksheet and explain how the experiment helps them solve the challenge question introduced in lesson 1 of this unit.

Subject:
Engineering
Life Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Permeable Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Pharmaceutical Research Design Problem
Read the Fine Print
Educational Use
Rating
0.0 stars

Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.

Subject:
Chemistry
Engineering
Life Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Angela D. Kolonich
Date Added:
09/18/2014