Updating search results...

Search Resources

1762 Results

View
Selected filters:
  • Engineering
AI and the Ocean (Lesson 3 of 5): Smart Machines
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson focuses on an introduction to Artificial Intelligence and an overview of how AI fits into the AIR Verizon Innovative Learning Course. Students will gain an overview of the Technology used in the AIR course, review the concepts of robotics, algorithms, and programming and how these concepts work with AI. Additionally, students will continue learning about the New Horizon Voyage from Plastic Ahoy! while asking critical thinking questions about how robotics and AI can help on the New Horizon and overall, in everyday life.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
AI and the Ocean (Lesson 4 of 5): Entrepreneurial Mindset
Read the Fine Print
Educational Use
Rating
0.0 stars

In Lesson 4 students will continue learning about Artificial Intelligence and Robotics and the preparation for the New Horizon Voyage. Students will review the idea of Entrepreneurship and how we can relate entrepreneurial ideas to the field of Artificial Intelligence and Robotics by looking at specific problems the New Horizon voyage might face as well as problems that might exist within their own lives or communities. AI and Robotics innovations face ethical issues such as AI bias and students will gain an introduction to this concept.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
AI and the Ocean (Lesson 5 of 5): Sustainable Oceans with AI
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will learn about Sustainability and its 3 pillars: Environmental Protection, Social Development and Economic Growth. "Plastic, Ahoy!" author Patricia Newman introduces herself and the book. If you have access to the "Plastic, Ahoy!" book, students should read Chapter 1 in this Lesson. Finally, students will complete a brainstorming/research and sketch of an Ocean Sustainability PSA which they will then transfer to Scratch programming in a guided Activity at the end of the Lesson.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Code Editor, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
AM I on the Radio?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups create working radios by soldering circuit components supplied from AM radio kits. By carrying out this activity in conjunction with its associated lesson concerning circuits and how AM radios work, students are able to identify each circuit component they are soldering, as well as how their placement causes the radio to work. Besides reinforcing lesson concepts, students also learn how to solder, which is an activity that many engineers perform regularly giving students a chance to be able to engage in a real-life engineering activity.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandon Jones
Emily Spataro
Lara Oliver
Lisa Burton
Date Added:
09/18/2014
Abdominal Cavity and Laparoscopic Surgery
Read the Fine Print
Educational Use
Rating
0.0 stars

For students interested in studying biomechanical engineering, especially in the field of surgery, this lesson serves as an anatomy and physiology primer of the abdominopelvic cavity. Students are introduced to the abdominopelvic cavity—a region of the body that is the focus of laparoscopic surgery—as well as the benefits and drawbacks of laparoscopic surgery. Understanding the abdominopelvic environment and laparoscopic surgery is critical for biomechanical engineers who design laparoscopic surgical tools.

Subject:
Engineering
Life Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
About Accuracy and Approximation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the concepts of accuracy and approximation as they pertain to robotics, gain insight into experimental accuracy, and learn how and when to estimate values that they measure. Students also explore sources of error stemming from the robot setup and rounding numbers.

Subject:
Engineering
Mathematics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Date Added:
09/18/2014
Above-Ground Storage Tank Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

At this point in the unit, students have learned about Pascal's law, Archimedes' principle, Bernoulli's principle, and why above-ground storage tanks are of major concern in the Houston Ship Channel and other coastal areas. In this culminating activity, student groups act as engineering design teams to derive equations to determine the stability of specific above-ground storage tank scenarios with given tank specifications and liquid contents. With their floatation analyses completed and the stability determined, students analyze the tank stability in specific storm conditions. Then, teams are challenged to come up with improved storage tank designs to make them less vulnerable to uplift, displacement and buckling in storm conditions. Teams present their analyses and design ideas in short class presentations.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Above-Ground Storage Tanks in the Houston Ship Channel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Accelerometer: Centripetal Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work as physicists to understand centripetal acceleration concepts. They also learn about a good robot design and the accelerometer sensor. They also learn about the relationship between centripetal acceleration and centripetal force governed by the radius between the motor and accelerometer and the amount of mass at the end of the robot's arm. Students graph and analyze data collected from an accelerometer, and learn to design robots with proper weight distribution across the robot for their robotic arms. Upon using a data logging program, they view their own data collected during the activity. By activity end , students understand how a change in radius or mass can affect the data obtained from the accelerometer through the plots generated from the data logging program. More specifically, students learn about the accuracy and precision of the accelerometer measurements from numerous trials.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Jennifer S. Haghpanah
Date Added:
09/18/2014
Acid Rain Effects
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct a simple experiment to model and explore the harmful effects of acid rain (vinegar) on living (green leaf and eggshell) and non-living (paper clip) objects.

Subject:
Engineering
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Acid (and Base) Rainbows
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the differences between acids and bases and how to use indicators, such as pH paper and red cabbage juice, to distinguish between them.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Denise Carlson
Gwendolyn Frank
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Sharon Perez
Date Added:
09/26/2008
Action-Reaction! Rocket
Read the Fine Print
Educational Use
Rating
0.0 stars

Students construct rockets from balloons propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Active and Passive Transport: Red Rover Send Particles Over
Read the Fine Print
Educational Use
Rating
0.0 stars

Students compare and contrast passive and active transport by playing a game to model this phenomenon. Movement through cell membranes is also modeled, as well as the structure and movement typical of the fluid mosaic model of the cell membrane. Concentration gradient, sizes, shapes and polarity of molecules determine the method of movement through cell membranes. This activity is associated with the Test your Mettle phase of the legacy cycle.

Subject:
Engineering
Life Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Melinda M. Higgins
Date Added:
09/18/2014
Adaptations for Bird Flight – Inspiration for Aeronautical Engineering
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity first asks the students to study the patterns of bird flight and understand that four main forces affect the flight abilities of a bird. They will study the shape, feather structure, and resulting differences in the pattern of flight. They will then look at several articles that feature newly designed planes and the birds that they are modeled after. The final component of this activity is to watch the Nature documentary, "Raptor Force" which chronicles the flight patterns of birds, how researchers study these animals, and what interests our military and aeronautical engineers about these natural adaptations. This activity serves as an extension to the biomimetics lesson. Although students will not be using this information in the design process for their desert resort, it provides interesting information pertaining to the current use of biomimetics in the field of aviation. Students may extend their design process by using this information to create a means of transportation to and from the resort if they chose to.

Subject:
Biology
Engineering
Life Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Advanced Micro:bit Circuits (Lesson 1 of 4): LEDs and Expansion Board
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to use the Micro:bit expansion board to wire and program smart circuits with wires, LED modules, and the expansion board. They will learn to use "digital write" and "pause" to program LEDs to turn on and off at certain times.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Advanced Micro:bit Circuits (Lesson 2 of 4): Inputs
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to wire and program the button modules for the Micro:bit expansion board in order to program a basketball possession arrow.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Advanced Micro:bit Circuits (Lesson 3 of 4): Servo Motor
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to program a special motor called a servo. They will use “If” statements and the light sensor to program a light-activated sunshade.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Advanced Micro:bit Circuits (Lesson 4 of 4): Combining Inputs and Outputs
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students learn how to wire and program advanced inputs and outputs like buzzers, color-changing lights, and touch sensors in order to wire and code an educational toy for VilBot's younger cousin, Lil Vil.

Estimated time required: 2-3 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Advanced Robotics Project (Lesson 1 of 6): Project Overview
Read the Fine Print
Educational Use
Rating
0.0 stars

This is an applied project where your students will identify a user from within their community, then use the design thinking process to create a project that solves their user’s problem. In Lesson 1, each student will learn about the project overview. Then, they will choose the end user they want to work with for the remaining lessons in the project!

Estimated time required: 1-2 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet, Video Editing Software.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Advanced Robotics Project (Lesson 2 of 6): Empathize and Define
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will find a real person in their community to act as their “end-user.” Students will contact this person by phone or email to set up a time for an interview. Students will interview their end-user and record their responses. If possible, students can even observe their end-user in action! The interview responses will be used to create an empathy map and develop a problem statement for this project.

Estimated time required: 2-3 class periods.

Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet, Video Editing Software.

Subject:
21st Century Skills
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023