In this lesson students will plant and care for soybeans under one …
In this lesson students will plant and care for soybeans under one of three different photoperiod regimes: First month: 16 hours; Second month: 14 hours; third month: 12 hours (control). 16 hours for all three months (long days). * 12 hours for all three months (short days)
As the plants grow, students will analyze and maintain records of their plant’s progress. This unit features 2 lessons and 7 files. Lessons are aligned to NGSS.
Students are introduced to a challenge question. Towards answering the question, they …
Students are introduced to a challenge question. Towards answering the question, they generate ideas for what they need to know about medicines and how they move through our bodies, watch a few short videos to gain multiple perspectives, and then learn lecture material to obtain a basic understanding of how antibiotics kill bacteria in the human body. They learn why different forms of medicine (pill, liquid or shot) get into the blood stream at different speeds.
Students set up and run the experiments they designed in the Population …
Students set up and run the experiments they designed in the Population Growth in Yeasts associated lesson, using simple yeast-molasses cultures in test tubes. Population growth is indicated by the amount of respiration occurring in the cultures, which in turn is indicated by the growth of carbon dioxide bubbles trapped within the culture tubes. Using this method, students test for a variety of environmental influences, such as temperature, food supply and pH.
Listen and learn how the battery converts energy using voltaic cells. Learn …
Listen and learn how the battery converts energy using voltaic cells. Learn how anodes and cathodes aid in oxidation and reduction. Discover how voltage and electrolysis direct the current.
Students learn about complex networks and how to use graphs to represent …
Students learn about complex networks and how to use graphs to represent them. They also learn that graph theory is a useful part of mathematics for studying complex networks in diverse applications of science and engineering, including neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Students are also introduced to random processes on networks. An illustrative example shows how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students, and demonstrates how scientists and engineers use mathematics and computers to model and simulate random processes on complex networks for the purposes of learning more about our world and creating solutions to improve our health, happiness and safety.
Using ordinary household materials, student “biomedical engineering” teams design prototype models that …
Using ordinary household materials, student “biomedical engineering” teams design prototype models that demonstrate semipermeability under the hypothetical scenario that they are creating a teaching tool for medical students. Working within material constraints, each model consists of two layers of a medium separated by material acting as the membrane. The competing groups must each demonstrate how water (or another substance) passes through the first layer of the medium, through the membrane, and into the second layer of the medium. After a few test/evaluate/redesign cycles, teams present their best prototypes to the rest of the class. Then student teams collaborate as a class to create one optimal design that reflects what they learned from the group design successes and failures. A pre/post-quiz, worksheet and rubric are provided.
Through two lessons and five activities, students explore the structure and function …
Through two lessons and five activities, students explore the structure and function of cell membranes. Specific transport functions, including active and passive transport, are presented. In the legacy cycle tradition, students are motivated with a Grand Challenge question. As they study the ingress and egress of particles through membranes, students learn about quantum dots and biotechnology through the concept of intracellular engineering.
Students create large-scale models of microfluidic devices using a process similar to …
Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.
Students obtain a basic understanding of microfluidic devices, how they are developed …
Students obtain a basic understanding of microfluidic devices, how they are developed and their uses in the medical field. After conducting the associated activity, they watch a video clip and learn about flow rate and how this relates to the speed at which medicine takes effect in the body. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit. They conclude by solving flow rate problems provided on a worksheet.
Students perform an activity similar to the childhood “telephone” game in which …
Students perform an activity similar to the childhood “telephone” game in which each communication step represents a biological process related to the passage of DNA from one cell to another. This game tangibly illustrates how DNA mutations can happen over several cell generations and the effects the mutations can have on the proteins that cells need to produce. Next, students use the results from the “telephone” game (normal, substitution, deletion or insertion) to test how the mutation affects the survivability of an organism in the wild. Through simple enactments, students act as “predators” and “eat” (remove) the organism from the environment, demonstrating natural selection based on mutation.
This lesson will give a general overview of how organelles help a …
This lesson will give a general overview of how organelles help a cell function and will explain the importance of organelles in increasing surface area to volume ratios. It is 3 of 3 in the series titled "Organelles."
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward …
Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they move across the neuron membrane.
Building on their understanding of graphs, students are introduced to random processes …
Building on their understanding of graphs, students are introduced to random processes on networks. They walk through an illustrative example to see how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students. This demonstrates how scientists and engineers use mathematics to model and simulate random processes on complex networks. Topics covered include random processes and modeling disease spread, specifically the SIR (susceptible, infectious, resistant) model.
Students explore the applications of quantum dots by researching a journal article …
Students explore the applications of quantum dots by researching a journal article and answering framing questions used in a classwide discussion. This "Harkness-method" discussion helps students become critical readers of scientific literature.
Students learn that engineers develop different polymers to serve various functions and …
Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).
Background image of normal disc-shaped red blood cells from the University of …
Background image of normal disc-shaped red blood cells from the University of Utah. Inset shows sickled red blood cells, curved and rigid, from the Virginia Medical College.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.