SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal …
SSAC Physical Volcanology module. Students build a spreadsheet and apply the ideal gas law to model the velocity of a bubble rising in a viscous magma.
A new instructional model, called Argument-Driven Inquiry (ADI), is introduced to elementary …
A new instructional model, called Argument-Driven Inquiry (ADI), is introduced to elementary teachers in this article. The author shows how school librarians and classroom teachers can collaborate to help students construct and communicate evidence, or arguments. Evidence buckets, a collaborative activity, and related online resources are presented. The article appears in the free online magazine Beyond Weather and the Water Cycle, which is structured around the seven essential principles of climate literacy.
In this Spreadsheets Across the Curriculum module, students build spreadsheets and draw …
In this Spreadsheets Across the Curriculum module, students build spreadsheets and draw graphs to explore a chemical buffer's ability to resist pH change, i.e., the buffer capacity. Quantification of buffer capacity is conceptually straightforward but involves multiple repetitive calculations. The key relationship is the Henderson-Hasselbalch equation: , which follows from the Law of Mass Action and The spreadsheets automate many of the calculations, thereby simplifying the process. Instead of focusing on the calculations, students can see what buffer capacity means and focus on the a deeper understanding of its implications. After reviewing several buffer calculations, the stduents use the spreadsheet to investigate buffer capacity graphically and characterize blood's physiological buffer system. While solving the question of how many breaths one can take before alkalosis sets in, the students manipulate a logarithmic equation, do "what if" modeling, and analyze rates of change from plots of their cacluated results.
In this hands-on activity, students explore the electrical force that takes place …
In this hands-on activity, students explore the electrical force that takes place between two objects. Each student builds an electroscope and uses the device to draw conclusions about objects' charge intensity. Students also determine what factors influence electric force.
Students create their own anemometers instruments for measuring wind speed. They see …
Students create their own anemometers instruments for measuring wind speed. They see how an anemometer measures wind speed by taking measurements at various school locations. They also learn about different types of anemometers, real-world applications, and how wind speed information helps engineers decide where to place wind turbines.
Construct and measure the energy efficiency and solar heat gain of a …
Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.
Students build their own small-scale model roller coasters using pipe insulation and …
Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.
Students investigate the weather from a systems approach, learning how individual parts …
Students investigate the weather from a systems approach, learning how individual parts of a system work together to create a final product. Students learn how a barometer works to measure the Earth's air pressure by building a model using simple materials. Students analyze the changes in barometer measurements over time and compare those to actual weather conditions. They learn how to use a barometer to understand air pressure and predict actual weather changes.
A bungee jump involves jumping from a tall structure while connected to …
A bungee jump involves jumping from a tall structure while connected to a large elastic cord. Design a bungee jump that is "safe" for a hard-boiled egg. Create a safety egg harness and connect it to a rubber band, which is your the "bungee cord." Finally, attach your bungee cord to a force sensor to measures the forces that push or pull your egg.
Students create and decorate their own spectrographs using simple materials and holographic …
Students create and decorate their own spectrographs using simple materials and holographic diffraction gratings. A holographic diffraction grating acts like a prism, showing the visual components of light. After building the spectrographs, students observe the spectra of different light sources as homework.
Students learn how to build simple piezoelectric generators to power LEDs. To …
Students learn how to build simple piezoelectric generators to power LEDs. To do this, they incorporate into a circuit a piezoelectric element that converts movements they make (mechanical energy) into electrical energy, which is stored in a capacitor (short-term battery). Once enough energy is stored, they flip a switch to light up an LED. Students also learn how much (surprisingly little) energy can be converted using the current state of technology for piezoelectric materials.
This is a hands-on activity to assess the students understanding of peptide …
This is a hands-on activity to assess the students understanding of peptide and disulfide bonds formed during protein synthesis. Students demonstrate the process of dehydration synthesis by combining amino acids through peptide bonds creating molecules of water, and one protein amino acid strand. It can also be used to assess students understanding of the process of translation.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.