Students learn that charge movement through a circuit depends on the resistance …
Students learn that charge movement through a circuit depends on the resistance and arrangement of the circuit components. In a hands-on activity, students build and investigate the characteristics of series circuits. In another activity, students design and build a flashlight.
How can we design more reliable systems to meet our communities’ energy …
How can we design more reliable systems to meet our communities’ energy needs? How can we design more reliable systems to meet our communities’ energy needs? This unit is designed to introduce students to the concept of energy transfer in a relevant and grounded context: the Texas power crisis of February 2021. Students read articles and wonder about the complex social, environmental, and physical realities that led to such a crisis. They figure out how energy transfers between systems from a generator to our communities, and what makes an energy source reliable. This allows the class to model and explain what happened in Texas at multiple scales, from the electrons in the wires to the power companies making difficult decisions to maintain stability. Students consider engineering tradeoffs, criteria, and constraints inherent in making decisions about our energy systems, and apply them in a culminating task: design a reliable energy solution that meets our communities' needs, as articulated by interviews with friends and family members. The task is designed to give students the tools to speak up in their local and global community for a better energy future, one that aligns with their own values, and those of their families.
OpenSciEd content is highly rated in EdReports and is aligned to NGSS standards.
How do forces in Earth’s interior determine what will happen to the …
How do forces in Earth’s interior determine what will happen to the surface we see? How do forces in Earth’s interior determine what will happen to the surface we see? This unit is designed to help students build an intuitive understanding of the relationship between energy transfer and unbalanced forces as they explore science ideas related to plate tectonics, radioactivity, convection, and rock formation.
OpenSciEd content is highly rated in EdReports and is aligned to NGSS standards.
How do we use radiation in our lives, and is it safe …
How do we use radiation in our lives, and is it safe for humans? How do we use radiation in our lives, and is it safe for humans? This unit begins with a news article about the unconventional use of microwave ovens to store electronics. Students are motivated to test the behavior of a Bluetooth speaker playing music from a device inside the oven when it is not running. They also test what happens when it runs and heats up food. This phenomenon sets the stage for exploring wave behavior, the interactions of matter with electromagnetic radiation, and how we can use these interactions in different technologies to digitize, store and transfer information. Throughout the unit, students use simulations to model field interactions and energy transfer through electromagnetic radiation. They conduct investigations using the microwave oven to explore how different materials interact with microwave radiation, and how the structure of this device affects energy transfer. Students explain how the frequency and amplitude of electromagnetic radiation affects its interactions with matter and evaluate the wave and photon models of electromagnetic radiation. Students obtain and communicate information about the uses of electromagnetic radiation, its safety, and methods of protection. They apply these ideas in a culminating task to evaluate whether 5G technology is safe.
OpenSciEd content is highly rated in EdReports and is aligned to NGSS standards.
A lesson plan for guiding students through a simple research experiment focused …
A lesson plan for guiding students through a simple research experiment focused on transfer of energy is described for teacher administration and student explanation. Also includes a detailed rubric for evaluating student work.
Explore how heating and cooling iron, brick, and water adds or removes …
Explore how heating and cooling iron, brick, and water adds or removes energy. See how energy is transferred between objects. Build your own system, with energy sources, changers, and users. Track and visualize how energy flows and changes through your system. Java required.
Learn about the analysis of parallel circuits in the context of a …
Learn about the analysis of parallel circuits in the context of a realistic household circuit using our interactive simulation. A PDF worksheet and a video tutorial are also available. [3:24]
A free CK-12 account is required to view all materials.
Students learn how engineers design devices that use water to generate electricity …
Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Student teams work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.
Students learn how engineers harness the energy of the wind to produce …
Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadvantages to using wind power compared to other non-renewable energy sources.
How might you use an object’s gravitational potential energy to move an …
How might you use an object’s gravitational potential energy to move an object? This challenge will explore how differently shaped objects store potential energy and are affected by gravity. We can see the energy of motion around us every day. From how we run to school or work to driving in our cars, the energy of motion can be seen (and experienced) everywhere. Exploring the energy of motion is one of the easiest ways to understand how energy transfers since we can see it so concretely! Analyzing energy use can help us recognize how we might design and develop sustainable energy systems in the future.
This is a 120-minute lesson that includes a self-paced interactive module and classroom activities. The teacher guide includes a challenge sequence (timeline), relevance to standards, materials list, assessment, evaluation rubric, and learning extensions.
Lesson objectives: (1) Students recognize that mechanical energy includes: Kinetic energy (KE)- the energy of motion, and Potential energy (PE)- the energy of position. (2) Students recognize that stored energy is potential while moving energy is kinetic.
An explanation to prove the volume ratios in a Carnot cycle. [17:08] …
An explanation to prove the volume ratios in a Carnot cycle. [17:08]
Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.
How does energy flow in and out of our atmosphere? Explore how …
How does energy flow in and out of our atmosphere? Explore how solar and infrared radiation enters and exits the atmosphere with an interactive model. Control the amounts of carbon dioxide and clouds present in the model and learn how these factors can influence global temperature. Record results using snapshots of the model in the virtual lab notebook where you can annotate your observations.
In this video from DragonflyTV, follow the investigation of Isaac and Anjali …
In this video from DragonflyTV, follow the investigation of Isaac and Anjali as they record, measure, and analyze data about how the Sun's position in the sky affects a solar-powered car's speed.
Working as if they were engineers, students design and construct model solar …
Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.
This article provides elementary school teachers with background knowledge about science concepts …
This article provides elementary school teachers with background knowledge about science concepts needed to understand the first of seven essential principles of climate literacy--the sun is the primary source of energy for our climate system. Graphs, diagrams, and oneline resources provide more background for the teacher. The article appears in a free online magazine that focuses on the seven essential princples of the climate sciences.
Energy is neither created nor destroyed - and yet the global demand …
Energy is neither created nor destroyed - and yet the global demand for it continues to increase. But where does energy come from, and where does it go? This video examines the many ways in which energy cycles through our planet, from the sun to our food chain to electricity and beyond. [4:44]
Thermodynamics is the study of heat, "thermo," and work, "dynamics." We will …
Thermodynamics is the study of heat, "thermo," and work, "dynamics." We will be learning about energy transfer during chemical and physical changes, and how we can predict what kind of changes will occur. Concepts covered in this tutorial include the laws of thermodynamics, internal energy, heat, work, PV diagrams, enthalpy, Hess's law, entropy, and Gibbs free energy.
Khan Academy learning modules include a Community space where users can ask questions and seek help from community members. Educators should consult with their Technology administrators to determine the use of Khan Academy learning modules in their classroom. Please review materials from external sites before sharing with students.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.