Monitor the temperature of a melting ice cube and use temperature probes …
Monitor the temperature of a melting ice cube and use temperature probes to electronically plot the data on graphs. Investigate what temperature the ice is as it melts in addition to monitoring the temperature of liquid the ice is submerged in.
Metric Conversion at a Glance is an easy way to teach students …
Metric Conversion at a Glance is an easy way to teach students how to convert one metric measurement into another without the use of fractions. It works for one, two and three dimensions length, area and volume.
Students obtain a basic understanding of microfluidic devices, how they are developed …
Students obtain a basic understanding of microfluidic devices, how they are developed and their uses in the medical field. After conducting the associated activity, they watch a video clip and learn about flow rate and how this relates to the speed at which medicine takes effect in the body. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit. They conclude by solving flow rate problems provided on a worksheet.
In this video from DragonflyTV, Tiana and Sammy measure, record, and analyze …
In this video from DragonflyTV, Tiana and Sammy measure, record, and analyze the results of a drop box test to find out how everyday items behave in microgravity.
In this geology activity, students investigate the physical property of mineral cleavage …
In this geology activity, students investigate the physical property of mineral cleavage by physically trying to break down a block of halite and describing the results. This lab addresses many misunderstandings non-majors have about the physical properties of minerals and includes a brief write up of their conclusions.
This activity is a lab investigation in which students make mass/volume measurements …
This activity is a lab investigation in which students make mass/volume measurements of several samples of the same mineral to determine the mineral's density. Students graph their data and make the connection between their qualitative understanding of what density is and the mathematical/graphical representation of density.
This activity is a mini-lab where students determine relationships between gas laws …
This activity is a mini-lab where students determine relationships between gas laws and temperature, pressure, and volume; particularly Charles and Boyle's Law. The concept of mini-labs originated from Dr. Dan Branan and Dr. Matt Morgan. See mini-labs.org for more details.
This activity is a guided practice and scaffolding activity in which the …
This activity is a guided practice and scaffolding activity in which the students learn how to configure electrons of elements and determine the number of valence electrons.
A collaboration between the National Aeronautics and Space Administration (NASA) and the …
A collaboration between the National Aeronautics and Space Administration (NASA) and the CK-12 Foundation, this book provides high school mathematics and physics teachers with an introduction to the main principles of modeling and simulation used in science and engineering. An appendix of lesson plans is included.
Through class discussion and think-pair-share questions, this activity helps students come to …
Through class discussion and think-pair-share questions, this activity helps students come to understand the difference between emf and potential difference in electrical circuits. These concepts are broached within the context of internal resistance of batteries.
In this interactive lecture, models of the hydrogen atom are explored using …
In this interactive lecture, models of the hydrogen atom are explored using an online Java applet. The exploration leads to qualitative and quantitative analysis of energy transitions.
This activity is an indoor lab for use with Vernier gas pressure …
This activity is an indoor lab for use with Vernier gas pressure sensors that allows students to experimentally determine the molar volume of a gas and ideal gas constant.
Learn to identify different molecular shapes, to understand the interactions that create …
Learn to identify different molecular shapes, to understand the interactions that create these shapes, and how to predict a molecule's shape given certain information about it. Explore these concepts using three-dimensional computer models and answer a series of questions to reinforce your understanding.
In this activity, students interact with 12 models to observe emergent phenomena …
In this activity, students interact with 12 models to observe emergent phenomena as molecules assemble themselves. Investigate the factors that are important to self-assembly, including shape and polarity. Try to assemble a monolayer by "pushing" the molecules to the substrate (it's not easy!). Rotate complex molecules to view their structure. Finally, create your own nanostructures by selecting molecules, adding charges to them, and observing the results of self-assembly.
In this interactive activity from ChemThink, learn about covalent molecules and how …
In this interactive activity from ChemThink, learn about covalent molecules and how the VSEPR theory predicts the shapes of covalently-bonded molecules.
Created by the Concord Consortium, the Molecular Workbench is "a modeling tool …
Created by the Concord Consortium, the Molecular Workbench is "a modeling tool for designing and conducting computational experiments across science." First-time visitors can check out one of the Featured Simulations to get started. The homepage contains a number of curriculum modules which deal with chemical bonding, semiconductors, and diffusion. Visitors can learn how to create their own simulations via the online manual, which is available here as well. The Articles area is quite helpful, as it contains full-text pieces on nanoscience education, quantum chemistry, and a primer on how transistors work. A good way to look over all of the offerings here is to click on the Showcase area. Here visitors can view the Featured simulations, or look through one of five topical sections, which include Biotech and Nanotechnology. Visitors will need to install the free Molecular Workbench software, which is available for Windows, Linux, and Mac.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.