The engineering design process involves many steps. Not only must an engineer …
The engineering design process involves many steps. Not only must an engineer be able to devise a solution to a problem, he or she must also be ready to test and evaluate that solution to reach the best result. To successfully complete the design process, an engineer must be able to identify design flaws and learn from his or her mistakes. In this video segment adapted from ZOOM, learn about the design process as cast members create automatic door openers that enable them to open their bedroom doors while lying on their beds. For grades 3-8.
A collection of five interactive activities and labs to help young learners …
A collection of five interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes both educator and family guides, materials lists, and extension activities. Activities include an introduction to scientists, engineering, and the design process; designing an oven; ice cream and slime; movement; and growing a plant.
A collection of six interactive activities and labs to help young learners …
A collection of six interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes both educator and family guides, materials lists, and extension activities. Activities include an introduction to scientists, engineering, and the design process; airplane flight; meteorologists; safe travelling; building a bird nest; and fossil hunting.
A collection of five interactive activities and labs to help young learners …
A collection of five interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes an educator guide, materials list, and extension activities. Activities include an introduction to the engineering design process; magnetic energy; states of matter life cycle; and genetics.
A collection of four interactive activities and labs to help young learners …
A collection of four interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes an educator guide, materials list, and extension activities. Activities include an introduction to the engineering design process; matter and its interactions; energy conversions; roller coaster design; building a pizza oven; and weathering and erosion.
A collection of four interactive activities and labs to help young learners …
A collection of four interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes an educator guide, materials list, and extension activities. Activities include an introduction to the engineering design process; egg drop engineering; creating a periscope; ecosystems; plant structures and processes; and astronomy.
A collection of seven interactive activities and labs to help young learners …
A collection of seven interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes an educator guide, materials list, and extension activities. Activities include an introduction to the engineering design process; asteroid impact; density; variables; and physical science.
A collection of six interactive activities and labs to help young learners …
A collection of six interactive activities and labs to help young learners understand science, technology, engineering, and mathematics concepts while also actively experiencing the engineering design process. This resource includes both educator and family guides, materials lists, and extension activities. Activities include an introduction to scientists, engineering, and the design process; portable weather stations; shadow puppets; the Three Little Pigs; musical instruments; and designing a bird feeder.
Students are introduced to the concept of engineering biological organisms and studying …
Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.
Students visualize and interact with concepts already learned, specifically algebraic equations and …
Students visualize and interact with concepts already learned, specifically algebraic equations and solving for unknown variables. They construct a balancing seesaw system (LEGO® Balance Scale) made from LEGO MINDSTORMS® parts and digital components to mimic a balancing scale. They are given example algebraic equation problems to analyze, configure onto the balance scale, and evaluate by manipulating LEGO pieces and gram masses that represent terms of an equation such as unknown variables, coefficients and integers. Digital light sensors, built into the LEGO Balance Scale, detect any balance or imbalances displayed on the balancing scale. The LEGO Balance Scale interactively issues a digital indication of balance or imbalance within the system. If unbalanced, students continue using the LEGO Balance Scale until they are confident in their understanding of solving algebraic equations. The goal is for students to become confident in solving algebraic equations by fundamentally understanding the basics of algebra and real-world algebraic applications.
Students follow the steps of the engineering design process as they design …
Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.
Students hypothesize whether vinegar and ammonia-based glass cleaner are acids or bases. …
Students hypothesize whether vinegar and ammonia-based glass cleaner are acids or bases. They create designs on index cards using these substances as invisible inks. After the index cards have dried, they apply red cabbage juice as an indicator to reveal the designs.
Students learn the basics of acid/base chemistry in a fun, interactive way …
Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.
In this lesson students will use the Makecode.microbit.org site to create block …
In this lesson students will use the Makecode.microbit.org site to create block coding projects. In addition, they will think critically about what their coding products do. Finally, they will create a combination Light & Temperature Meter.
Estimated time required: 1-2 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.
In Lesson 2, students will complete three tutorials to learn about Random …
In Lesson 2, students will complete three tutorials to learn about Random Numbers, Variables, and If/Then Statements using MakeCode code blocks and Micro:bits. Then they will dissect a pre-made program by writing Pseudo-code before using it as the basis for a Board Game which the student designs.
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Tablet.
This online lesson plan is a fun way to wrap up a …
This online lesson plan is a fun way to wrap up a unit on animals! Student create their own shape book, then fill it with information about an animal they've researched. This site also provides adaptations and resources. (To access this lesson plan, you must register with Crayola.com. Registration is free and takes only a few moments to complete.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.