In this lesson, students will refer to their sketches and as they …
In this lesson, students will refer to their sketches and as they create prototypes for their RVR project. This lesson includes examples and tips for creating a prototype, but this is a great opportunity for students to be creative and dedicate a good amount of time making a RVR prototype that they are proud of.
Estimated time required: 4-5 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet, Video Editing Software.
In this lesson, students will arrange a time to meet with their …
In this lesson, students will arrange a time to meet with their end-user (in person or virtually) to show them their prototype. The end-user will interact with the prototype, and the student will capture their feedback in the activity worksheet. Finally, students will take the feedback and use it to improve their prototype.
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet, Video Editing Software.
In this lesson, students will finish their project, create a pitch video …
In this lesson, students will finish their project, create a pitch video for their project, share their project with their peers, give/receive feedback on each other’s projects, export and submit their designs, and answer a series of reflection questions.
Estimated time required: 3-4 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet, Video Editing Software.
In this lesson, students will learn how to create more advanced robotics …
In this lesson, students will learn how to create more advanced robotics by controlling the Sphero RVR with the micro:bit. Students will learn about sensors in robotics and explore the temperature sensor function of the micro:bit. They will learn how to add the RVR SDK extension to the micro:bit MakeCode programming environment.
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet.
In this lesson, students will learn how to use the RVR + …
In this lesson, students will learn how to use the RVR + littleBits to build a robotic aquatic creature that moves and makes noise! First, you'll think about real life aquatic animals that the New Horizon might have encountered, then you'll plan, design, build and program a RVR with littleBits sensors and actuators to simulate this animal's sound, movement and behaviors.
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet.
In “Plastic, Ahoy!” the New Horizon had to navigate the Great Pacific …
In “Plastic, Ahoy!” the New Horizon had to navigate the Great Pacific Garbage Patch in the North Pacific Central Gyre. The gyre is filled with plastic, debris, and lots of sea creatures! In this lesson, students will learn how to use the RVR + littleBits + micro:bit to build a Gyre Navigator Bot that can detect and avoid obstacles!
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet.
In this lesson, students will build on all the hardware and software …
In this lesson, students will build on all the hardware and software they have used so far and take a deeper look at one specific component known as the servo motor. Students will build and test a Sample Label Bot using RVR, the littleBits servo and a micro:bit that can help the New Horizon researchers by labeling their water samples from the Great Pacific Garbage Patch.
Estimated time required: 2-3 class periods.
Technology required for this lesson: Code Editor, Electronics Kit, Laptop/Desktop, Robotics Kit, Tablet.
Our brains control every movement we make. Most of us take for …
Our brains control every movement we make. Most of us take for granted our ability to pick up a cup or change the television station. However, for people who have lost a limb or become paralyzed, the inability to do these things means a loss of freedom and independence. This video segment from Greater Boston describes how neuroscientists and bioengineers have teamed up to create a system that allows people who have lost motor functions to control electronic devices through their thoughts alone. Grades 6-12
Fly into high-tech career exploration as you learn about careers with satellites, …
Fly into high-tech career exploration as you learn about careers with satellites, airplanes and flying cars of the future! See the Lab Squad kids’ report for this career in Support Materials +
In this lesson, students will learn about Afrofuturism through exploring the Afrofuturism: …
In this lesson, students will learn about Afrofuturism through exploring the Afrofuturism: A History of Black Futures collection at the National Museum of African American History and Culture. Students will complete an online scavenger hunt and engage in a discussion about the cultural significance, key ideas and themes, and impact of Afrofuturism. They will also compare and contrast Afrofuturism and Black Futures. As an extension, students might give input on any ideas regarding Kinfolk’s monuments of Sun Ra, P-Funk, and Octavia Butler.
Estimated time required: 1-2 class periods.
Technology required for this lesson: Augmented Reality, Internet Connectivity, Laptop/Desktop, Smartphone, Tablet, Tablet or Smartphone.
Do you need proof that driving is a dangerous activity? More Americans …
Do you need proof that driving is a dangerous activity? More Americans have died in car crashes over the past 100 years than in all the wars the U.S. has ever fought combined. More than 40,000 Americans die each year on the nation's highways, most as the result of high-speed collisions. In this video segment adapted from NOVA, learn how engineers developed the air bag, an important automobile-safety device now found in most cars. Recommended for: Grades 3-12
In this video segment adapted from ZOOM, cast members make their own …
In this video segment adapted from ZOOM, cast members make their own hovercraft and demonstrate how the air leaking out of a balloon can make a plastic plate hover above a table.
This video from First Alaskans Institute spotlights the Alaska Native community of …
This video from First Alaskans Institute spotlights the Alaska Native community of St. Paul and its hands-on commitment to care for the land and animals on which it depends.
In this video adapted from Storyknife Productions, Alaska Native pilots share how …
In this video adapted from Storyknife Productions, Alaska Native pilots share how they use traditional knowledge to read the landscape and predict the weather.
In this video adapted from KUAC-TV and the Geophysical Institute at the …
In this video adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, Alaska Native students contribute to research on how their environment is changing as a result of global warming.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.