Students learn how the total solar irradiance hitting a photovoltaic (PV) panel …
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens. This is the final lesson in the Photovoltaic Efficiency unit and is intended to accompany a fun design project (see the associated Concentrating on the Sun with PVs activity) to wrap up the unit. However, it can be completed independently of the other unit lessons and activities.
Students design, build and test reflectors to measure the effect of solar …
Students design, build and test reflectors to measure the effect of solar reflectance on the efficiency of solar PV panels. They use a small PV panel, a multimeter, cardboard and foil to build and test their reflectors in preparation for a class competition. Then they graph and discuss their results with the class. Complete this activity as part of the Photovoltaic Efficiency unit and in conjunction with the Concentrated Solar Power lesson.
Los estudiantes construyen un probador de conductividad y prueban una variedad de …
Los estudiantes construyen un probador de conductividad y prueban una variedad de materiales para determinar si son buenos conductores de electricidad.
With the help of simple, teacher-led demonstration activities, students learn the basic …
With the help of simple, teacher-led demonstration activities, students learn the basic concepts of heat transfer by means of conduction, convection, and radiation. Students then apply these concepts as they work in teams to solve two problems. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same thirty-minute time interval. Students design their solutions using only common, everyday materials. They record the water temperatures in their two soda cans every five minutes, and prepare line graphs in order to visually compare their results to the temperature of an unaltered control can of water.
Students make a simple conductivity tester using a battery and light bulb. …
Students make a simple conductivity tester using a battery and light bulb. They learn the difference between conductors and insulators of electrical energy as they test a variety of materials for their ability to conduct electricity.
A high speed video clip of a roller coaster is used as …
A high speed video clip of a roller coaster is used as an example of conservation of mechanical energy. Students use the video to determine whether mechanical energy is conserved while the roller coaster rolls up, and then back down a hil.
Students are introduced to the idea of improving efficiency by examining a …
Students are introduced to the idea of improving efficiency by examining a setting that is familiar to many teenagers fast food restaurants. More specifically, they learn about the concepts of trade-offs, constraints, increasing efficiency and systems thinking. They consider how to improve efficiency in a struggling restaurant through delegating tasks, restructuring employee responsibilities and revising a floor plan, all while working within limitations and requirements. Finally, students summarize and defend their suggested changes in argumentative essays.
Students use simple household materials, such as PVC piping and compact mirrors, …
Students use simple household materials, such as PVC piping and compact mirrors, to construct models of laser-based security systems. The protected object (a "mummified troll" or another treasure of your choosing) is placed "on display" in the center of the modeled room and protected by a laser system that utilizes a laser beam reflected off mirrors to trigger a light trip sensor with alarm.
We design and create objects to make our lives easier and more …
We design and create objects to make our lives easier and more comfortable. The houses in which we live are excellent examples of this. Depending on your local climate, the features of your house have been designed to satisfy your particular environmental needs: protection from hot, cold, windy and/or rainy weather. In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world.
Is the food chain shown above accurate? Does the first link depict …
Is the food chain shown above accurate? Does the first link depict a producer, the second link a herbivore, and the third link an omnivore / carnivore? Students must correctly determine whether a species is a producer or consumer, and what type of consumer; herbivore, omnivore, or carnivore. Students are provided with a list of Sonoran Desert species and asked to construct, within their groups, several food chains. These food chains are then be used to construct a food web. In order to complete this activity, students must first research the individual species to understand their feeding habits.
Meet Adrienne LaChance, a Construction Engineer with Danis, who likes to build …
Meet Adrienne LaChance, a Construction Engineer with Danis, who likes to build things and is part of a women-led team building a brand new hospital. Engineering Your Future shares real stories from young professionals who want to inform and inspire students about in-demand engineering careers.
Students work in pairs to create three simple types of model bridges …
Students work in pairs to create three simple types of model bridges (beam, arch, suspension). They observe quantitatively how the bridges work under load and why engineers use different types of bridges for different places. They also get an idea of the parts needed to build bridges, and their functions. The strength of model bridges is mainly a factor of the quality of materials used, and therefore they do not provide a clear visual representation of tension and compression forces involved. Yet, students are able to see these forces at work in three prototype designs and draw conclusions about their dependence on span, width and supporting structures of the bridge designs.
Successful completion of this cooperative learning activity requires the active involvement of …
Successful completion of this cooperative learning activity requires the active involvement of the individual, the small group and the entire classroom (collaboration). The goal is to make a simple task as complicated as possible by constructing a single complex machine.
Meet Melissa Bruno, a Control Engineer with E Tech Group, who uses …
Meet Melissa Bruno, a Control Engineer with E Tech Group, who uses her programming skills to teach machines to make things. She also makes amazing Halloween costumes for kids in wheelchairs! Engineering Your Future shares real stories from young professionals who want to inform and inspire students about in-demand engineering careers.
How does the shape of a cam affect the motion of a …
How does the shape of a cam affect the motion of a mechanism or machine? Explore the types of cam and follower mechanisms to identify how they transfer motion in machines. Engineering a mechanical device involves designing with a result in mind. This challenge will ask students to explore math, science and engineering design through the device of cam and follower.
This is a 4-hour lesson that includes a self-paced interactive module and classroom activities. The teacher guide includes a challenge sequence (timeline), relevance to standards, materials list, assessment, evaluation rubric, and learning extensions.
Lesson objectives: (1) Identify types of cam and follower and how they are connected to levers and mechanisms. (2) Differentiate the shapes of cams and the movement created. (3) Design, build and demonstrate your cam and follower mechanism.
Students gain a deeper understanding of how sound sensors work through a …
Students gain a deeper understanding of how sound sensors work through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT taskbots and sound sensors. Student groups each program a robot computer to use to the sound of hand claps to control the robot's movement. They learn programming skills and logic design in parallel. They experience how robots can take sensor input and use it to make decisions to move and turn, similar to the human sense of hearing. A PowerPoint® presentation and pre/post quizzes are provided.
Bluetooth is everywhere—from smartphones to computers to cars. Even though students are …
Bluetooth is everywhere—from smartphones to computers to cars. Even though students are exposed to this technology, many are not aware of how they can use it themselves to wirelessly control their own creative projects! For this challenge, students build on what they learned during a previous Arduino maker challenge, Make and Control a Servo Arm with Your Computer, and learn how to control a servo with an Android phone (iPhones do not work with the components used in this challenge). By the end of the exercise, expect students to be wirelessly controlling a servo with a simple phone application!
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.