Updating search results...

Search Resources

46 Results

View
Selected filters:
  • stress
Above the Noise: Homework in High School: How Much Is Too Much?
Read the Fine Print
Educational Use
Rating
0.0 stars

It's not hard to find a high school student who is stressed about homework. Many are stressed to the max - juggling extracurricular activities, jobs, and family responsibilities. It can be hard for many students, particularly low-income students, to find the time to dedicate to homework. So students in the PBS NewsHour Student Reporting Labs program at YouthBeat in Oakland, California are asking what's a fair amount of homework for high school students? Included is a lesson plan to accompany the video. [6:40]

Subject:
Health and Physical Education
Material Type:
Audio/Video
Provider:
PBS LearningMedia
Date Added:
11/06/2023
Applying Hooke's Law to Cancer Detection
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore Hooke's law while working in small groups at their lab benches. They collect displacement data for springs with unknown spring constants, k, by adding various masses of known weight. After exploring Hooke's law and answering a series of application questions, students apply their new understanding to explore a tissue of known surface area. Students then use the necessary relationships to depict a cancerous tumor amidst normal tissue by creating a graph in Microsoft Excel.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Battle of the Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the properties of composites using inexpensive materials and processing techniques. They create beams using Laffy Taffy and water, and a choice of various reinforcements (pasta, rice, candies) and fabricating temperatures. Student groups compete for the highest strength beam. They measure flexure strength with three-point bend tests and calculations. Results are compared and discussed to learn how different materials and reinforcement shapes affect material properties and performance.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Breaking Beams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Breaking the Mold
Read the Fine Print
Educational Use
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
02/19/2009
Building a Stronger (Sweeter) New Orleans
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create and analyze composite materials with the intent of using the materials to construct a structure with optimal strength and minimal density. The composite materials are made of puffed rice cereal, marshmallows and chocolate chips. Student teams vary the concentrations of the three components to create their composite materials. They determine the material density and test its compressive strength by placing weights on it and measuring how much the material compresses. Students graph stress vs. strain and determine Young's modulus to analyze the strength of their materials.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charisse Nelson
Sarah Wigodsky
Date Added:
10/14/2015
Cosmic Rhythm
Read the Fine Print
Educational Use
Rating
0.0 stars

Students write poems using rhyme and meter as they come to understand the mechanical concept of rhythm, based on the principle of oscillation, in a broader biological and cultural context, as seen in dance and sports, poetry and other literary forms, and communication in general. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world — concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.

Subject:
Practitioner Support
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Deformation: Nanocomposite Compression
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.

Subject:
Architecture and Design
Arts
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer S. Haghpanah
Date Added:
09/18/2014
Detecting Breast Cancer
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the unit challenge: To develop a painless means of identifying cancerous tumors. Solving the challenge depends on an understanding of the properties of stress and strain. After learning the challenge question, students generate ideas and consider the knowledge required to solve the challenge. Then they read an expert's opinion on ultrasound imaging and the potentials for detecting cancerous tumors. This interview helps to direct student research and learning towards finding a solution.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luke Diamond
Date Added:
09/18/2014
Does My Model Valve Stack up to the Real Thing?
Read the Fine Print
Educational Use
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Elasticity & Young's Modulus for Tissue Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Fancy Feet
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the engineering design process to solve a real-world problem shoe engineering! Working in small teams, they design, build and test a pair of wearable platform or high-heeled shoes, taking into consideration the stress and strain forces that it will encounter from the shoe wearer. They conclude the activity with a "walk-off" to test the shoe designs and discuss the design process.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Feel the Stress
Read the Fine Print
Educational Use
Rating
0.0 stars

Working individually or in groups, students explore the concept of stress (compression) through physical experience and math. They discover why it hurts more to poke themselves with mechanical pencil lead than with an eraser. Then they prove why this is so by using the basic equation for stress and applying the concepts to real engineering problems.

Subject:
Engineering
Geometry
Life Science
Mathematics
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeffrey Mitchell
Date Added:
09/18/2014
Floppy Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Forces All Around
Read the Fine Print
Educational Use
Rating
0.0 stars

Through a series of three lessons, each with its own hands-on activity, students are introduced to 1) forces, loads and stress, 2) tensile loads and failure, and 3) torsion on structures—fundamental physics concepts that are critical to understanding the built world. The associated activities engage students through experimenting with hot glue gun sticks to experience tension, compression and torsion; the design of plastic chair webbing strips; and problem-solving to reinforce foam insulation "antenna towers" to withstand specified bending and twisting.

Subject:
Physical Science
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
02/17/2021
Fun Look at Material Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the multidisciplinary field of material science. Through a class demo and PowerPoint® presentation, they learn the basic classes of materials (metals, ceramics, polymers, composites) and how they differ from one another, considering concepts such as stress, strain, ductile, brittle, deformation and fracture. Practical examples help students understand how the materials are applied, and further information about specific research illustrates how materials and material science are useful in space exploration. A worksheet and quiz are provided.

Subject:
Engineering
Physics
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Happy Healthy Kids: Like a Tree
Read the Fine Print
Educational Use
Rating
0.0 stars

In this episode of Happy Healthy Kids, Miss Kelsey models how the tree pose keeps the mind and body centered. Try it with your family and create a balanced and focused "Family Forest"! [0:50]

Subject:
Social Studies
Material Type:
Audio/Video
Provider:
PBS LearningMedia
Date Added:
12/01/2022
IRIS: Elastic Rebound Demonstration using a Yardstick
Read the Fine Print
Educational Use
Rating
0.0 stars

See a scientist talk about elasticity and brittle material using a yardstick as a mechanical analog for the lithosphere, and to show how stress is stored in-between tectonic plates. [1:57]

Subject:
Social Studies
Material Type:
Audio/Video
Provider:
Incorporated Research Institutions for Seismology (IRIS)
Date Added:
12/01/2023
Mechanics of Elastic Solids
Read the Fine Print
Educational Use
Rating
0.0 stars

After conducting the associated activity, students are introduced to the material behavior of elastic solids. Engineering stress and strain are defined and their importance in designing devices and systems is explained. How engineers measure, calculate and interpret properties of elastic materials is addressed. Students calculate stress, strain and modulus of elasticity, and learn about the typical engineering stress-strain diagram (graph) of an elastic material.

Subject:
Engineering
Life Science
Mathematics
Physics
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014