Updating search results...

Search Resources

1869 Results

View
Selected filters:
  • Engineering
Processes on Complex Networks
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on their understanding of graphs, students are introduced to random processes on networks. They walk through an illustrative example to see how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students. This demonstrates how scientists and engineers use mathematics to model and simulate random processes on complex networks. Topics covered include random processes and modeling disease spread, specifically the SIR (susceptible, infectious, resistant) model.

Subject:
Engineering
Life Science
Mathematics
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014
Prodigious Printing Possibilities
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity is designed to give students an understanding of one aspect of what an engineer does and the ability to experience various steps in the engineering design process as it relates to a 3D printing task. Students transform into engineers as they work in teams to carry out a 3D printing task by using a blunt-tip needle syringe to print a line using a variety of colored liquid materials (shampoo, conditioner, aloe, and hand sanitizer) into a small plastic box filled with a gel base. Approximating the work of engineers, the teams observe the interactions between the printed material and the gel base at intervals of 10 minutes and iterate, or change, the ink base as necessary to achieve a goal. Using the dye to color the ink allows students to determine which material will permeate or diffuse throughout the base more effectively. Teams share their results to compare with their classmates. A real-world application for this investigation would be when engineers conduct research to develop new medicines, the goal is for the medicine to make its way through the body in the most effective way so that the body can heal.

Subject:
Biology
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Amanda Spotz
Date Added:
07/03/2019
Product Development and the Environment
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the life cycles of engineered products and how they impact the environment. They use a basic life cycle assessment method that assigns fictional numerical values for different steps in the life cycle. Then they use their analyses to compare the impacts of their products to other products, and suggest ways to reduce environmental impact based on their analyses.

Subject:
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Date Added:
10/14/2015
Program Analysis Using App Inventor
Read the Fine Print
Educational Use
Rating
0.0 stars

In computer science, program analysis is used to determine the behavior of computer programs. Flow charts are an important tool for understanding how programs work by tracing control flow. Control flow is a graphical representation of the logic present in the program. In this lesson, students learn about, design and create flow charts for different scenarios, including a game based on the Battleship® created by Hasbro©. In the associated activity, Flow Charting App Inventor, students apply their knowledge from this lesson and gain experience with a software application called App Inventor. This lesson and its associated activity can be stand-alone or used as a launching point for the Android Acceleration Application unit or any lesson involving App Inventor.

Subject:
Computer Science
Engineering
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Programming a Robot
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from Cyberchase, the CyberSquad breaks down an action into a series of steps in order to program a robot to do what they need it to do.

Subject:
Computer Science
Engineering
Geometry
Mathematics
Physics
Science
Material Type:
Lecture
Provider:
PBS LearningMedia
Author:
The William and Flora Hewlett Foundation
WNET
Date Added:
08/29/2008
Project Engineer: Adam | Engineering Your Future
Read the Fine Print
Educational Use
Rating
0.0 stars

Meet Adam Kokoi, the Director of Innovation and New Technologies for energy company, AES. Adam is a world traveler who is helping to lead the transition from fossil fuels to clean and renewable energy. Engineering Your Future shares real stories from young professionals who want to inform and inspire students about in-demand engineering careers.

Subject:
Career and Technical Education
Engineering
Science
Material Type:
Audio/Video
Provider:
PBS LearningMedia
Provider Set:
Engineering Your Future
Date Added:
04/17/2024
Projectile Magic
Read the Fine Print
Educational Use
Rating
0.0 stars

Students watch video clips from October Sky and Harry Potter and the Sorcerer's Stone to learn about projectile motion. They explore the relationships between displacement, velocity and acceleration and calculate simple projectile motion. The objective of this activity is to articulate concepts related to force and motion through direct immersive interaction based on the theme, The Science Behind Harry Potter. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Engineering
Physics
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Projectile Motion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of projectile motion, of which they are often familiar from life experiences,such as playing sports such as basketball or baseball, even though they may not understand the physics involved. Students use tabletop-sized robots to build projectile throwers and measure motion using sensors. They compute distances and velocities using simple kinematic equations and confirm their results through measurements by hand. To apply the concept, students calculate the necessary speed of an object to reach a certain distance in a hypothetical scenaro: A group of hikers stranded at the bottom of a cliff need food, but rescuers cannot deliver it themselves, so they must devise a way to get the food to the hikers.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ronald Poveda
Zachary Nishino
Date Added:
09/18/2014
Projections and Coordinates: Turning a 3D Earth into Flatlands
Read the Fine Print
Educational Use
Rating
0.0 stars

Projections and coordinates are key advancements in the geographic sciences that allow us to better understand the nature of the Earth and how to describe location. These innovations in describing the Earth are the basis for everything that is done in a GIS framework. Shape of the Earth is a critical starting point because in fact the Earth is not round but rather a more complex shape called a geoid. Coordinate systems are often referenced to a particular model shape of the Earth, but many different formats exist because not all coordinates work equally well in all areas. While projections and coordinates are abstract concepts in themselves, students eventually find them interesting because 1) it causes them to challenge their current ideas of the Earth's shape and 2) it is much easier to visualize these ideas for learning through interactive GIS such as Google Earth.

Subject:
Engineering
Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
09/18/2014
Prosthetic Party
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams investigate biomedical engineering and the technology of prosthetics. Students create a model prosthetic lower leg using various materials. Each team demonstrate its prosthesis' strength and consider its pros and cons, giving insight into the characteristics and materials biomedical engineers consider in designing artificial limbs.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Protect That Pill
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reinforce their knowledge of the different parts of the digestive system and explore the concept of simulation by developing a pill coating that can withstand the churning actions and acidic environment found in the stomach. Teams test the coating durability by using a clear soda to simulate stomach acid.

Subject:
Engineering
Life Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacob Crosby
Malinda Schaefer Zarske
Todd Curtis
Date Added:
09/18/2014
Protect Those Eyes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build prototypes for protective eyewear. They choose different activities or sports that require protective eyewear and design a device for that particular use. Students learn about the many ways in which the eyes can be damaged and how engineers incorporate different features and materials into eyewear designs to best protect the eyes.

Subject:
Career and Technical Education
Engineering
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lesley Herrmann
Malinda Schaefer Zarske
William Surles
Date Added:
10/14/2015
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015
Protecting Our City with Levees
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build their own model levees. Acting as engineers for their city, teams create sturdy barriers to prevent water from flooding a city in the event of a hurricane.

Subject:
Earth and Space Science
Engineering
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Katherine Beggs
Date Added:
10/14/2015
Protecting the Mummified Troll
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the (hypothetical) task of developing an invisible (non-intrusive) security system to protect the school's treasured mummified troll! Solving the challenge depends on an understanding of the properties of light. After being introduced to the challenge question, students generate ideas and consider the knowledge required find solutions. They watch a portion of the "Mythbuster's Crimes and Myth-Demeanors" episode ($20), which helps direct their research and learning toward solving the challenge. They begin to study laser applications in security systems, coming to realize the role of lasers in today's society.

Subject:
Engineering
Physics
Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Prototyping in the Present (Lesson 1 of 5): Welcome to Digital Product Innovations
Read the Fine Print
Educational Use
Rating
0.0 stars

During this lesson, students will meet Tiempa, the course’s narrator. Tiempa is a time travelling cat from the future and will guide the students on this time-travel themed adventure. Finally, students will create sketches of their three favorite innovations from the present and submit their sketches.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
English Language Arts
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Prototyping in the Present (Lesson 2 of 5): What is a Prototype?
Read the Fine Print
Educational Use
Rating
0.0 stars

In Lesson 2, students will learn about paper prototyping by re-creating a paper model of one their innovation sketches from Lesson 1. They will capture a photo or video of this paper prototype and submit it to their teacher.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Prototyping in the Present (Lesson 3 of 5): Technology in Digital Product Innovations
Read the Fine Print
Educational Use
Rating
0.0 stars

In Lesson 3, students will learn about the different technology they will use in DPI: hands-on prototyping, graphic design with Gravit, 3D modeling with TinkerCAD and OnShape, and 3D printing. They will watch videos and answer questions about the various technology, and then use cardboard prototyping to create a model of a digital product.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
21st Century Skills
Arts
Creativity and Innovation
Engineering
Interdisciplinary, Project-based, and Real-World Learning
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023
Prototyping in the Present (Lesson 4 of 5): The Entrepreneurial Mindset
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn about entrepreneurship, and how any ideas they come up with can empower them to create real change in the world. Students will watch a video about Maya, a 13-year-old entrepreneur, to learn the importance of mindset and branding. Finally, students will complete an entrepreneurial activity where they create a logo to brand Tiempa’s Time Machine.

Estimated time required: 1-2 class periods.

Technology required for this lesson: Laptop/Desktop, Tablet.

Subject:
Arts
Engineering
Science
Technology
Material Type:
Lesson Plan
Provider:
Verizon
Provider Set:
Verizon Innovative Learning HQ - Lessons and Apps
Author:
J. Orin Edson Entrepreneurship + Innovation Institute at Arizona State University
Date Added:
09/20/2023