Students build a saltwater circuit, which is an electrical circuit that uses …
Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.
This animation adapted from NASA shows the orbital paths of spacecraft in …
This animation adapted from NASA shows the orbital paths of spacecraft in NASA's Earth Observing Fleet that are a source of wide-scale, primary research about Earth.
Use a virtual scanning tunneling microscope (STM) to observe electron behavior in …
Use a virtual scanning tunneling microscope (STM) to observe electron behavior in an atomic-scale world. Walk through the principles of this technology step-by-step. First learn how the STM works. Then try it yourself! Use a virtual STM to manipulate individual atoms by scanning for, picking up, and moving electrons. Finally, explore the advantages and disadvantages of the two modes of an STM: the constant-height mode and the constant-current mode.
Science Over Everything is a blog dedicated to helping middle and high …
Science Over Everything is a blog dedicated to helping middle and high school students understand current events in science and why they are relevant to their daily lives. Our site is intended to be a resource for teachers, providing each blog post with classroom activities to help the students comprehend what they are reading and fit the articles in a school's curriculum.
Students learn how to classify materials as mixtures, elements or compounds and …
Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.
This lab is a two part investigation on separating a solid from …
This lab is a two part investigation on separating a solid from a liquid where students are asked to develop their own investigable question and carry out the experiment on day two.
Students learn about STEM education through an engineering design challenge that focuses …
Students learn about STEM education through an engineering design challenge that focuses on improving building materials used in shantytowns. First, they consider the factors that lead to shantytown development. After researching the implications of living in shantytowns, students design, build and test cement-based concrete block composites made of discarded and/or recycled materials. The aim is to make a material that is resistant to degradation by chemicals or climate, can withstand natural disasters, and endure through human-made conditions (such as urban overcrowding or pollution). The composites must be made of materials that are inexpensive and readily available so that they are viable alternative in shantytown communities. Students assess the results both chemically and physically and then iterate their designs with the materials that proved to be strongest.
In this adapted ZOOM video segment, cast members calculate how much water …
In this adapted ZOOM video segment, cast members calculate how much water they each use during a typical shower. They compare their results to their original predictions.
This activity is a classroom lab where students learn that cold water …
This activity is a classroom lab where students learn that cold water is denser and hot water is less dense than room temperature water. Students perform an experiment and relate to their background knowledge to make conjectures.
This activity is a classroom experiment where students participate or observe that …
This activity is a classroom experiment where students participate or observe that different densities of liquids will yield different results in a sink-or-float activity.
Students explore and experiment with various objects to find which materials will …
Students explore and experiment with various objects to find which materials will float or sink. They record predictions and results, and generate ideas about the properties of materials that float or sink.
In this video segment adapted from NOVA scienceNOW, learn about engineering innovations …
In this video segment adapted from NOVA scienceNOW, learn about engineering innovations that could help detect a bridge's structural weaknesses before they become dangerous.
Students learn about the properties of solutions—such as ion interactions, surface tension …
Students learn about the properties of solutions—such as ion interactions, surface tension and viscosity—as they make their own soap and shampoo and then compare their properties. Working as if they are chemical engineers, they explore and compare how the two surfactants behave in tap water, as well as classroom-prepared acidic water, hard water and seawater using four tests: a “shake test” (assessing the amount of bubbles produced), a surface tension test, a viscosity test, and a pH test. Then they coalesce their findings into a recommendation for how to engineer the best soap versus shampoo. The activity may be shortened by using purchased liquid soap and shampoo from which students proceed to conduct the four tests. A lab worksheet and post-quiz are provided.
In this video from DragonflyTV, follow the investigation of Isaac and Anjali …
In this video from DragonflyTV, follow the investigation of Isaac and Anjali as they record, measure, and analyze data about how the Sun's position in the sky affects a solar-powered car's speed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.