Students use gesture to describe the bulk deformation and local deformation apparent …
Students use gesture to describe the bulk deformation and local deformation apparent in images of a contractional analog experiment. Students then calculate bulk shortening and bulk thickening for the experiment and describe the structures accommodating that strain.
Explore the relationship between the genetic code on the DNA strand and …
Explore the relationship between the genetic code on the DNA strand and the resulting protein and rudimentary shape it forms. Through models of transcription and translation, you will discover this relationship and the resilience to mutations built into our genetic code. Start by exploring DNA's double helix with an interactive 3D model. Highlight base pairs, look at one or both strands, and turn hydrogen bonds on or off. Next, watch an animation of transcription, which creates RNA from DNA, and translation, which 'reads' the RNA codons to create a protein.
In this exercise, students match microstructures to the deformation mechanisms by which …
In this exercise, students match microstructures to the deformation mechanisms by which they form; compare pairs of photomicrographs chosen to highlight key differences between some common microstructures; and complete a self-quiz in which they identify microstructures and infer deformation mechanisms from photomicrographs.
Determine the dew point temperature for your classroom through a hands-on experiment. …
Determine the dew point temperature for your classroom through a hands-on experiment. Use humidity and temperature probes to investigate the temperature at which it would rain in your classroom! Learn about water density and the conditions necessary to produce fog or rain.
Diffusion is the net movement of particles from areas of high concentration …
Diffusion is the net movement of particles from areas of high concentration (number of particles per unit area) to low concentration. In this activity, students use a molecular dynamics model to view the behavior of diffusion in gases and liquids.
Movement of ions in and out of cells is crucial to maintaining …
Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.
The interactions of electrons with matter have great explanatory power and are …
The interactions of electrons with matter have great explanatory power and are central to many technologies from transistors, diodes, smoke detectors, and dosemeters to sophisticated imaging, lasers, and quantum computing. A conceptual grasp of the interactions of electrons in general allows students to acquire deeper understanding that can be applied to a very broad range of technologies.
Use a series of interactive models and games to explore electrostatics. Learn …
Use a series of interactive models and games to explore electrostatics. Learn about the effects positive and negative charges have on one another, and investigate these effects further through games. Learn about Coulomb's law and the concept that both the distance between the charges and the difference in the charges affect the strength of the force. Explore polarization at an atomic level, and learn how a material that does not hold any net charge can be attracted to a charged object. Students will be able to:
Students will listen to historic news events as broadcast on radio, view …
Students will listen to historic news events as broadcast on radio, view current news coverage on television, and compare and contrast how those events were reported on both media by developing an essay which addresses the question "Is radio a valid medium to convey news or entertainment?" Students will evaluate the impact of radio as compared to other current broadcast media, including television, magazines, and newspapers. Students then use question sheets to evaluate and compare coverage, and the lesson culminates in students writing a comparative essay.
Explore the concept of evaporative cooling through a hands-on experiment. Use a …
Explore the concept of evaporative cooling through a hands-on experiment. Use a wet cloth and fan to model an air-conditioner and use temperature and relative humidity sensors to collect data. Then digitally plot the data using graphs in the activity. In an optional extension, make your own modifications to improve the cooler's efficiency.
This resource guide helps teachers to use World War I source material …
This resource guide helps teachers to use World War I source material from the World War I in Ohio Collection on Ohio Memory in the classroom. The material included in this resource guide engages students with technologies developed during World War I that shaped the world after the war’s end.
In this exercise, students explore the geometric relationship between bedding/cleavage intersections and …
In this exercise, students explore the geometric relationship between bedding/cleavage intersections and fold axes for axial planar, fanning, and transecting cleavage.
This resource guide helps teachers to use World War I source material …
This resource guide helps teachers to use World War I source material from the World War I in Ohio Collection on Ohio Memory in the classroom. The material included in this resource guide engages students with the soldier experience from enlistment and training to service overseas.
In this activity, students study gas laws at a molecular level. They …
In this activity, students study gas laws at a molecular level. They vary the volume of a container at constant temperature to see how pressure changes (Boyle's Law), change the temperature of a container at constant pressure to see how the volume changes with temperature (Charles’s Law), and experiment with heating a gas in a closed container to discover how pressure changes with temperature (Gay Lussac's Law). They also discover the relationship between the number of gas molecules and gas volume (Avogadro's Law). Finally, students use their knowledge of gas laws to model a heated soda can collapsing as it is plunged into ice water.
Featuring images of glacier formations, this interactive resource adapted from the National …
Featuring images of glacier formations, this interactive resource adapted from the National Park Service explains what glaciers are, where they are found, how they form, and how they move.
Being able to control the movement of electrons is fundamental for making …
Being able to control the movement of electrons is fundamental for making all electronic devices work. Discover how electric and magnetic fields can be used to move electrons around. Begin by exploring the relationship between electric forces and charges with vectors. Then, learn about electron fields. Finally, test your knowledge in a fun "Electron Shooting" game!
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.